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4
Dynamic Analysis. Mass Matrices and
External Forces

The formulation of the inertia and external forces appearing at any of the ele-
ments of a multibody system, in terms of the dependent coordinates that describe
their position, velocity, and acceleration, is of fundamental importance for the
solution of the dynamic analysis.

The external and inertia forces of a body subjected to an acceleration field may
be expressed in a diversity of ways. The most general way is finding the resul-
tant force and torque about a specific point of the element. However, there are
many ways of doing this. All of the ways are based on representing the inertia
and external forces by means of equivalent force systems (the same resultant
force and torque about any point). This will depend on the type of representation
(coordinates) used for the multibody system. We deal in this chapter with the
representation of the inertia and external forces generated in the elements of pla-
nar and three-dimensional multibody systems that are characterized by natural
coordinates. The formulation of the simpler planar element is the start, which
will serve as an introduction to the more complicated three-dimensional devel-
opment.

The reader needs a minimum background in analytical dynamics for the under-
standing of this and subsequent chapters. For this reason, a background on this
topic is provided in the first section, that can certainly be skipped by those with
a sufficient knowledge.

4.1  Background on Analytical Dynamics

This section is intended to provide the reader with a basic background on some
fundamental principles of analytical dynamics that are important for the under-
standing of the rest of this chapter and subsequent ones. The interested reader
who wants to attain a deeper knowledge on this topic is referred to other works
dedicated to the study of classical mechanics, such as Goldstein (1980), and
Bastero and Casellas (1976).
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Figure 4.1.  A virtual displacement on a single pendulum.

4.1.1  Principle of Virtual Displacements

The principle of virtual displacements is a powerful principle which is suitable
for the dynamic analysis of connected rigid and flexible multibody systems. Prior
to the definition of the principle, we need to introduce some concepts. A virtual
displacement is defined as an infinitesimal imaginary change of configuration of
a system at a stationary time that is consistent with its boundary and constraint
conditions. If the configuration is represented by the position vector q, the vector
of generalized virtual displacement is customarily denoted by d q.

Figure 4.1 shows a single pendulum of length L with a mass m at its tip. If
the system is characterized by the independent coordinate q, a virtual displace-
ment dq consistent with the boundary condition is simply an imaginary in-
finitesimal rotation at the hinge. If the system is characterized by the dependent
Cartesian coordinates x and y of its tip, the virtual displacements dx and dy are
not independent but interrelated through the constraint condition:

f º x 2 + y 2 Ð L 2 = 0

The relationship between dx and dy can be obtained by imposing the condi-
tion that a virtual variation of the constraint be zero:

df = fq dq = 2x    2y  dx
dy

 = 0 (4.1)

Virtual quantities operate the same way as variations. Without entering into
the details of calculus of variations (Reddy (1984)), a virtual quantity or variation
d, acts like a differential operator but with respect to the dependent variables
only, since the time variable is considered fixed. In other words, the multibody
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system is considered at a stationary position. As an example, if f is a function
of q, q, and t, its variation is

df = fq dq + fq dq  (4.2)

whereas its differential is

df = fq dq + fq dq + ft dt  (4.3)

The laws of variation of sums, products, ratios, and so forth are the same as
those of differentiation. In addition, the variational operator can be interchanged
with the differential and integral operators.

Virtual work dW is defined as the work done by all the forces acting on a sys-
tem, including the inertia forces, that undergoes a virtual displacement and can be
expressed as

dW = Qiå
1

n

 dqi (4.4)

Each of the generalized forces Qi represents the virtual work done when dqi=1
and d qj=0 for j¹i. When the system is characterized by n independent coordi-
nates, the principle of virtual displacements can be defined as

dW = Qiå
1

n

 dqi = 0 (4.5)

meaning that the virtual work of all the forces acting on the system, including
the inertia forces, must be zero. In multibody dynamics the forces Qi do not in-
clude the reaction forces, because these do not produce any virtual work. The rea-
son being that reaction forces are couples of internal forces that act along the
vector connecting their position coordinates but with opposite signs, thus can-
celing the corresponding virtual work.

4.1.2  Hamilton's Principle

Consider a system characterized by a set of n independent coordinates qi. Let
L=TÐV be the system Lagrangian, where T and V are the kinetic and potential
energy, respectively, and Wnc is the work done by the non-conservative forces.
Hamilton's principle (Hamilton (1834)) establishes that the motion of the sys-
tem from time t1 to time t2, at which the motion is specified, is such that the
integral action

A = L dt
t1

t2
  + Wnc dt

t1

t2
 (4.6)

has a stationary value for the correct path of the motion. This means that the
variation of the action A has to vanish:
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dA = dL dt
t1

t2

  + dWnc dt
t1

t2

  = 0 (4.7)

where the property that the variation is interchangeable with the integral operator
has been used.

In most cases, the representation of multibody systems is done by means of
dependent coordinates that are interrelated through the constraint conditions. Let
us assume that the system is characterized by a vector q of n dependent coordi-
nates that satisfy m constraint conditions fk(q, t)=0, which we will assume are
of the holonomic type. Hamilton's principle can still be generalized for these
cases by means of the Lagrange multipliers technique. Accordingly, the action A
is augmented with an additional term:

A = L dt
t1

t2

 + Wnc dt
t1

t2

 Ð  
t1

t2

(fk l k)å
k=1

m

 dt (4.8)

where lk are the Lagrange multipliers affected by a minus sign for convenience
of the formulation. The stationary condition dA=0 now leads to

dA = dL dt
t1

t2

 + dWnc dt
t1

t2

 Ð  
t1

t2

(dqiå
i=1

n

 ¶ fk

¶qi

 lk) dt = 0å
k= 1

m

(4.9)

The summation in the last term of (4.9) can also be expressed in matrix form
as (dqTFFFFq

Tllll), where    llll    is the vector of the Lagrange multipliers and FFFF q is the
Jacobian matrix of the constraints.

4.1.3  Lagrange's Equations

The Lagrange's equations can be directly obtained from Hamilton's principle.
Knowing that T=T(q, q

.
 ) and V=V(q) their variations become

dT = ¶T

¶qi

 dqi å
i=1

n

 + ¶T

¶qi

 dqi å
i=1

n

 º dqT ¶T

¶q
 + dq

T
 ¶T

¶q
  (4.10a)

dV  = ¶V

¶qi

 dqi å
i=1

n

 º  dqT ¶V

¶q
 (4.10b)

dWnc = dqT Qex (4.10c)

where Qex represents the external forces and those not coming from a potential.
Note that both index and matrix notation have been used simultaneously.
Continuing with matrix notation, the application of Hamilton's principle defined
by equation (4.9) leads to
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dqT ¶T

¶q
 Ð ¶V

¶q
 + Qex Ð FFFF q

T llll  + dq
T
 ¶T

¶q
 dt = 0

t1

t2

(4.11)

The last term can be integrated by parts to yield

dq
T
 ¶T

¶q
 dt

t1

t2

 = dqT ¶T

¶q t1

t2
 Ð dqT d

dt
 ¶T

¶q
 dt 

t1

t2

(4.12)

The first term on the RHS vanishes because the motion is specified at the
two ends t1 and t2. Thus the variations will be zero: dq(t1)=dq(t2)=0. The substi-
tution of (4.12) into (4.11) yields

dqT d
dt

 ¶L

¶q
 Ð ¶L

¶q
 + FFFF q

T llll Ð Qex  dt = 0
t1

t2

(4.13)

Although the coordinates q are not independent, the expression between paren-
thesis can always be made zero through the selection of the m Lagrange multi-
pliers llll . According to the fundamental lemma of the calculus of variations
(Reddy (1984)), equation (4.13) leads to

d
dt

 ¶L

¶q
 Ð ¶L

¶q
 + FFFF q

T llll = Qex (4.14)

which along with the m constraint equations FFFF(q)=0 constitutes a set of (m+n)
differential algebraic equations of motion. In the next example we apply these
equations to a mechanical system.

Example 4.1

Use the Lagrange's equations to write the equations of motion of a mechanical sys-
tem with kinetic energy T = 1/2 qT M q, potential energy V = V(q), external
forces Qex, and whose constraint conditions are FFFF (q)=0.

The partial derivatives of the kinetic and potential energies are

¶L

¶q
 = M q  q  ;  

¶L

¶q
 = 

¶T

¶q
 Ð 

¶V

¶q

then

d
dt

 
¶L

¶q
 = M q  q + M q  q

and the application of equation (4.14) leads to

M q  q + FFFF q
T
 llll = Qex Ð  M q  q + Tq Ð  Vq

It is worth pointing out that the terms M q  q and Tq are quadratic in the veloc-
ities with coefficients that may depend on q (See Example 4.2). The terms that in-
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Figure 4.2.  Mass sliding along a single pendulum.

volve q
.

i
2 are called centrifugal, and those that involve (q

.
i q
.

j) are called Coriolis
terms. The term Vq involves q but not its derivatives.

Example 4.2

Figure 4.2 depicts a mass m1 that slides along a massless rod which also has a
mass m2 attached at its tip. Find the equations of motion of this system subject to
gravity using the two independent coordinates q1 and q2.

The kinetic energy of this system is

T = 1
2

 m1 x 1
2
 + y 1

2
 + 1

2
 m2 x 2

2
 + y 2

2

Knowing that x 1 = q1 cos q2, y 1 = q1 sin q2, x 2 = L cos q2, and y 2 = L sin q2 the ki-
netic energy in terms of q1 and q2 becomes

T  = 1
2

 q1 q2   m1   0
0   m2 L 2 + m1 q1

2
  q1

q2

 

Similarly, the potential energy is

V = m1 g q1 sin q2 + m2 g L sin q2

and the application of equation (4.14) leads to

m1   0

0   m2L
2
 + m1q1

2
 

q1

q2

 = 
m1q1q2

2

Ð2m 1q1q1q2

 Ð 
m1 g sin q2

m1q1 + m2L  g cos q2

Since q1 and q2 are independent coordinates, note that there are no Lagrange
multipliers involved in the equations. Note also that the mass matrix depends on
the coordinate q2, and this leads to velocity-dependent nonlinear terms on the
RHS of the equation. In addition, the gravity forces contain nonlinear terms that
involve transcendental functions with q2 as argument.
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Example 4.3

Repeat Example 4.2 using the Cartesian (natural) coordinates of the two masses m1
and m2 .

The kinetic energy of the system in Cartesian coordinates takes a simpler ex-
pression:

T = 1
2

 x 1y 1x 2y 2  

m1 0 0 0
0 m1 0 0
0 0 m2 0
0 0 0 m2

 

x 1

y 1

x 2

y 2

Similarly the potential energy is

V = m1 g y 1 + m2 g y 2

The constraint conditions to be satisfied by the Cartesian coordinates are

x 2
2 + y 2

2 Ð L
2
 = 0

x 1 y 2 Ð x 2 y 1 = 0

Since the mass matrix is now constant, the equations of motion take this sim-
pler form:

 

m1 0 0 0
0 m1 0 0
0 0 m2 0
0 0 0 m2

 

x 1

y 1

x 2

y 2

 + 

0  y 2

0  Ðx 2

2x 2  Ðy 1

2y 2  x 1

 l1

l2

 =  

0
Ðm 1g

0
Ðm 2g

Although the number of equations in Example 4.3 has increased compared to
the results of Example 4.2, first the mass matrix and gravity forces are constant.
Secondly, the degree of nonlinearity has decreased, since there are neither veloc-
ity-dependent terms nor transcendental functions in the RHS. In addition, the
Jacobian matrix of the constraints is linear in q.

This simple example already illustrates a general fact: the formulation of the
equations of motion in independent coordinates leads to a minimum set of highly
nonlinear and coupled ordinary differential equations. On the other hand, the for-
mulation using natural coordinates, at the expense of increasing the number of
equations, results in a simpler and less coupled set of equations with milder non-
linearities.

4.1.4  Virtual Power

Virtual power also constitutes a powerful principle that will be extensively used
in the formulations of this chapter. A virtual velocity vector is defined as a set of
imaginary velocities at a stationary time that is consistent with the homoge-
neous form of the velocity constraint conditions, that is, having no RHS term
including the partial derivatives with respect to time. Following the example of
Figure 4.1, let q* be a set of virtual velocities which must satisfy the velocity
constraint conditions:
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f = fq
T q

*
 = 2x   2y  x

*

y
*

 = 0 (4.15)

Contrary to the virtual displacements, the virtual velocities need not be in-
finitesimal since equation (4.15) involves q and not d q. A virtual velocity
(finite) is a virtual displacement (infinitesimal) divided by the infinitesimal scalar
dt. The principle of virtual power is heavily used for the algorithms and formula-
tions presented in this book; hence it is worthwhile to describe it in some detail.
Virtual power can be applied with dependent or with independent coordinates.
Both ways will be presented next.

Dependent coordinates. If q* constitutes a set of n dependent virtual velocities,
the principle of virtual power can be formulated as:

W
*
 = Fiå

i=1

n

 qi
*
 º  q

*T
 F = 0 (4.16)

where F is the vector of all the forces that produce virtual power, including the
inertia ones:

F = M q Ð  Q (4.17)

Vector Q includes the external forces and the velocity-dependent inertia forces
(centrifugal and Coriolis), but it does not include internal constraint forces, since
they do not produce virtual power. Therefore, equation (4.17) leads to a set of
equilibrium equations (M q Ð Q = 0) in which the internal constraint forces are
missing. These forces should appear in the equilibrium equations. In order to find
the equilibrium equations from (4.16) and (4.17), we need to add a set of forces
in the direction of the constraint violations (FFFF q

T llll), where the columns of FFFF q
T

(rows of FFFF q) give the direction of constraint forces and llll is the vector of their
unknown magnitudes. As the virtual velocity vector q* belongs to the nullspace
of FFFF q, the product (q*TFFFFq

T  llll) is zero and can be added to equation (4.16) yield-
ing:

W * = q
*T

 (M q Ð Q +  FFFF q
T llll) = 0 (4.18)

Only nÐm elements of the virtual velocity vector q* can be arbitrarily se-
lected. It is always possible to find the m components llll (Lagrange multipliers)
in such a way that the parenthesis of (4.18) becomes zero. Consequently, the
complete set of force equilibrium equations is:

M q +  FFFF q
T llll = Q (4.19)

Equation (4.19) is analogous to the equations of motion of Example 4.1, that
were obtained from the Lagrange's equations (4.14).

Independent coordinates. The virtual power principle can be applied also with
independent virtual velocities. From equations (4.16) and (4.17), it could not be
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concluded that (M q Ð Q = 0), because the multiplying virtual velocities q* were
not independent; hence they could not be chosen arbitrarily. However, it is pos-
sible to use now the transformations between dependent and independent veloci-
ties and accelerations introduced in Chapter 3 as carried out in the following ex-
ample.

Example 4.4

Starting from equation (4.16), obtain the equations of motion with independent
coordinates, using the velocity and acceleration transformations defined in
Section 3.5.

The virtual velocity vector q* must satisfy the homogeneous version of the ve-
locity constraint equations:

FFFFq q* = 0 (i)

and according to equation (3.29) there is an (nxf) matrix R such that

q* = R z* (ii)

On the other hand, according to equation (3.32), the following relationship be-
tween dependent and independent accelerations can be established:

q = R z +  Sc (iii)

where R is the same matrix that appears in the previous expression and (Sc) is a
term that depends on the actual velocities and can be computed easily. Introducing
equation (iii) and the transpose of equation (ii) in equation (4.16), we get

z* T RT M R z +  M Sc Ð  Q  = 0 (iv)

Since the virtual velocities z* can be chosen arbitrarily, it is possible to con-
clude that the term that multiplies them in expression (iv) must be zero.
Consequently, we arrive at the following set of equations:

RT M R z =  RT Q Ð M Sc (v)

This is an important result that will be developed with more detail in Chapter
5. In Chapter 8, it will be used as the basis of very efficient dynamic formula-
tions. The application of the virtual power method with independent coordinates
is also referred to in the bibliography as KaneÕs method or KaneÕs equations
(Kane and Levinson (1985), and Huston (1990)). Other authors (Schiehlen
(1984)) refer to it as JourdainsÕ principle.

4.1.5  Canonical Equations

The Lagrange's equations lead to a set of n second order differential equations in
the coordinates q. Hamilton introduced a transformation that leads to a set of 2n
first order differential equations and they are called the canonical or Hamilton's
equations. The study of these equations is important because it gives one a fur-
ther insight into the multibody problems. In addition, they provide an alternative
to the acceleration-based formulations at the time of their numerical implementa-
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tion. Also, the canonical equations constitute the foundation for the study of
quantum and relativistic mechanics.

The canonical momenta is defined as

p = ¶L

¶q
(4.20)

where L is the Lagrangian and q a set of dependent coordinates that characterize
the system. According to this new variable, the Lagrange's equations (4.14) take
the following form:

p = Q ex +  ¶L

¶q
 Ð FFFF q

T llll  (4.21)

The Lagrangian is a function of q, q, and t, and, consequently, its differential
becomes

dL = dq
T
 ¶L

¶q
 + dqT ¶L

¶q
 + ¶L

¶t
 dt  (4.22)

Using equations (4.20) and (4.21):

dL = dqTp +  dqT p Ð  Q ex +  FFFF q
T llll  +  ¶L

¶t
 dt (4.23)

Knowing that  dqT p = d(pT q) Ð  dpT q, equation (4.23) can be transformed
into

d pT q Ð L  = dpT q + dqT Qe x  Ð  FFFF q
T llll  Ð p  Ð  ¶L

¶t
 dt  (4.24)

The expression H = pT q Ð L is called the Hamiltonian function. The RHS of
(4.24) tells us that it is an explicit function of p, q, and t. Consequently,

dH = dpT ¶H

¶p
 + dqT ¶H

¶q
 + dt ¶H

¶t
(4.25)

Finally, identifying the terms on the RHS of equations (4.24) and (4.25), we
arrive at the canonical equations:

¶H

¶p
 = q (4.26)

¶H

¶q
 = Q ex Ð  FFFF q

T llll  Ð p (4.27)

In the case of mechanical systems, the Lagrangian L is defined in terms of q,
q, and t. Rather than following a lengthy process to form the Hamiltonian as an
explicit function of q, p, and t, and then differentiating as in (4.26) and (4.27),
the canonical equations can be directly obtained from (4.20) and (4.27). Since the
system kinetic energy is a quadratic function of the generalized velocities, equa-
tions (4.20) and (4.27) directly lead to the following set of equations in matrix
form:
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p = M q (4.28)

p = Lq + Q ex Ð  FFFF q
T llll (4.29)

where M  is the mass matrix, Lq=TqÐV q is the partial derivative of the
Lagrangian with respect to the coordinates, FFFFq is the Jacobian matrix of the con-
straints, and Qex the vector of applied external forces. The combination of equa-
tions (4.28)-(4.29) and the constraints conditions constitutes a system of 2n+m
differential and algebraic equations (DAEs). Although we arrive at n more equa-
tions than with the acceleration-based formulation (4.14), p can be obtained ex-
plicitly by (4.29). When comparing equations (4.29) and (4.14), one may see
that the term (M

 
q) that appears in the Lagrange's equations is not present in

their canonical counterparts.

Example 4.5

Repeat Example 4.2 using the canonical equations.
The application of equations (4.28) and (4.29) along with the expressions ob-

tained in Example 4.2 directly leads to the following equations:

p1

p2

 = Ð  m1 g  sin q2

m1 q1 + m2 L  g  cos q2

 + 
m1 q1 q2

2

0

p1
p2

 = 
m1   0

0   m2 L
2
 + m1 q1

2
 

q1

q2

Note how the term related to (M  q) that appears in Example 4.2 is not present now.

4.2  Inertia Forces. Mass Matrix

We study in this section the formation of the inertia forces that arise in each of
the elements of a multibody system undergoing a given motion. The aim of this
study is the formation of the mass matrix of the most common elements that
appear in the analysis of multibody systems. The form of these mass matrices
will undoubtedly depend on the type of coordinates chosen for the representation
of the multibody system, and we will only use the setting provided by the natu-
ral coordinates.

The inertia forces will be represented by means of equivalent forces that are
congruent with the natural coordinates of the element. Of all the analytical
methods exposed in Section 4.1, we will use the virtual power method, because
it leads to a direct formulation of the inertia forces and avoids the differentiation
process inherent in the Lagrange's equations. The Lagrange's equations can lead
to rather involved computations in cases when the kinetic energy is position
dependent. As mentioned in Section 4.1.4, if q

*
 are the virtual velocities, the

virtual power of the inertia forces can be written as the following dot product:
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Figure 4.3.  Inertial and local system of coordinates in a planar element with natural
coordinates.

 W * = q*T QI (4.30)

where QI are the inertia forces with respect to the natural coordinates, and W* is
the scalar virtual power.

The expressions of the inertia forces for the elements of the planar and three-
dimensional multibody systems will be developed below. The formulation of the
planar element is simpler and will serve as introduction for the three-dimensional
cases. In both the planar and spatial cases, the aim is to establish the inertia
forces as a product of a matrix (mass matrix) times the acceleration vector, so
that the virtual power expression becomes

W * = Ð q*T M q (4.31)

where the matrix M is a square, symmetric, and positive definite matrix which
depends on the inertia characteristics of the element: mass, position of the center
of gravity, and inertia tensor, and in some cases, on the position q of the ele-
ment as well.

4.2.1  Mass Matrix of Planar Bodies

Consider the planar element shown in Figure 4.3, whose motion is completely
defined by that of the basic points i and j. Consider also an inertial coordinates
system (x, y) and a moving one (x, y), with its origin fixed at the basic point i
and axis x going through point j.

The location of a generic point P of the element is defined by a position vec-
tor r in the inertial system and r in the moving system, so that
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r = ri +  A r (4.32)

where A is the rotation matrix. Since the element is rigid, the local position
vector r remains constant with the motion of the element. If the position of an
element is characterized by the Cartesian (natural) coordinates of the points i and
j, that of the point P will be defined as follows:

r = ri +  A r = ri +  c1  (rj Ð  ri) +  c2 n (4.33)

where c1 and c2 are the components of the vector r in the basis formed by the or-
thogonal vectors (rjÐri) and n. The vector n follows the direction of y and has
the same module as (rjÐri). Accordingly, the components of the vector r become

x = xi + c1 (xj Ð xi) Ð c2 (yj Ð yi) (4.34a)

y = yi + c1 (yj Ð yi) + c2 (xj Ð xi) (4.34b)

Equations (4.34) can be expressed in matrix form as follows:

r = x
y

 = 
1Ðc1       c2        c1    Ðc2

Ðc2     1Ðc1       c2     c1

 

xi
yi

xj

yj

 º C q  (4.35)

where qT = {xi yi xj yj} is the vector containing the natural coordinates of the el-
ement. Note again that the matrix C is constant for a given point P. It does not
change with the system's motion or with time. Consequently,

r = C q (4.36)

r = C q (4.37)

The coefficients c1 and c2 that define the matrix C can be simply expressed as
a function of the coordinates of the points i and j in the local reference frame in
the following way:

r = c1 (rj Ð  ri) +  c2 n (4.38)

Note, however, that ri=0 in the local reference frame, therefore (4.38) becomes

r = rj  |  n  c1
c2

 º  X c (4.39)

where the vector c contains the coefficients c1 and c2, and the matrix X  has as
columns the components of the vectors rj and n. Therefore, the following form
is taken:

X =  
 xj  Ðyj 

 yj  xj
 = 

Lij  0

 0  L i j

(4.40)

where Lij is the distance between points i and j. The matrix X  can always be in-
verted unless points i and j are coincident. Equation (4.39) can be used to solve
for c:

c = X Ð1 r (4.41)
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We now can formulate the virtual power of the inertia forces generated within
the element. These can be obtained as the integral, extended to all the elements,
of the virtual power of the inertia force of a differential mass located at the
generic point P:

W * = Ð r r*T r dW
W

(4.42)

where r is the mass density. Making use of equations (4.36) and (4.37), equation
(4.42) becomes

W * = Ð r q*T CT C q dW
W

(4.43)

Since the vectors q*T and q are independent of W, they can be moved out of
the integral to yield

W
*
 = Ð q

*T
 r C

T
 C dW

W
 q (4.44)

and comparing (4.31) with (4.44) the mass matrix can be established as

M = r  CT C dW
W

(4.45)

Performing the product CTC in equation (4.44), we obtain

M = r
W

 

(1Ðc1)
2
 + c2

2 0

0 (1Ðc1)
2
 + c2

2

(1Ðc1)c1 Ð c2
2 Ðc2

c2 (1Ðc1)c1 Ð c2
2

(1Ðc1)c1 Ð c2
2 c2

Ðc2 (1Ðc1)c1 Ð c2
2

c1
2 + c2

2      0

0      c1
2 + c2

2

 dW (4.46)

Note that the equation (4.46) involves the following integrals:

r dW = m
W

  (4.47a)

r c dW 
W

 = X Ð1 r r dW 
W

 = m X Ð1 rG (4.47b)

r c cTdW 
W

 = X Ð1 r r rT dW 
W

 XÐT = 1
L 2

 
Ix Ixy

Ixy Iy

  (4.47c)

where m is the total mass of the element, rG represents the local coordinates of
the center of gravity, and Ix  , Iy  and Ix y are the moments and products of inertia
with respect to x and y respectively. The integral in (4.47b) is the static moment
or first order area moment which is equal to the mass times the coordinates of
the center of gravity. Similarly, the integral in (4.47c) yields the moments of in-
ertia. Substituting the results of (4.47) into (4.46), we obtain the final expres-
sion for the mass matrix M:
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M = 

m Ð 2mxG

Lij

 + Ii

Lij
2

0  m xG

Lij

 Ð Ii

Lij
2

 Ð m yG

Lij

0 m Ð 2mxG

Lij

 + Ii

Lij
2

m yG

Lij

 m xG

Lij

 Ð Ii

Lij
2

 

m xG

Lij

 Ð Ii

Lij
2

m yG

Lij

Ii

Lij
2

0

Ð m yG

Lij

m xG

Lij

 Ð Ii

Lij
2

0 Ii

Lij
2

(4.48)

where Ii is the polar moment of inertia with respect to the basic point i. The
mass matrix defined by equation (4.48) is completely general for any planar ele-
ment, since any planar element will have at least two basic points with which
the mass matrix can be formulated. The mass matrix thus obtained is always
constant and this constitutes an important fact.

Example 4.6

Derive the mass matrix of a single bar element of total mass m and length Lij that
has the center of gravity located at the middle point.

Choosing the points i and j as the end points, one finds that the different pa-
rameters that appear in (4.48) take the following values:

x G = 
Lij

2
  ;    y G = 0 ;     Ii = m 

Lij
2

3
and the direct application of (4.48) yields

M = 

 m
3

 0  m
6

 0

0  m
3

 0  m
6

 

m
6

0 m
3

0

0 m
6

0 m
3

4.2.2  Mass Matrix of Three-Dimensional Bodies

The determination of the mass matrix of the three-dimensional bodies (or ele-
ments) follows a method similar to that used in the planar case. Three-dimen-
sional bodies not only require more complicated algebraic manipulations than the
planar ones, but in some cases the mass matrix is not constant and, therefore, re-
quires a special study. The analysis will start with the most general element de-
fined by two points and two non-coplanar unit vectors, which happens to have a
constant mass matrix. The mass matrix of the other elements including those
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Figure 4.4.  Inertial and local system of coordinates in a spatial element with natural
coordinates.

that are not constant, may be derived from this main one by coordinate transfor-
mations in which the virtual power method plays a key role.

Element with two points and two non-coplanar unit vectors. Consider the ele-
ment of Figure 4.4 defined by two basic points i and j and two unit vectors u
and v. Similar to the planar case, consider an inertial reference frame (x,y,z) and a
moving (or local) one (x,y,z) rigidly attached to the element that has its origin
located at a point O. Again, P represents a generic point of the element, and its
location is defined by the position vector r in the inertial frame and r in the local
frame. Since the element is rigid, the local relative position vector (r Ð  ri) re-
mains constant with the motion of the element. If the position of the three di-
mensional body is characterized by the Cartesian coordinates of the points i and j
and the unit vectors u and v, the position of the point P relative to point i will
be defined as follows:

r Ð  ri = c1  (rj Ð  ri) +  c2 u + c3 v (4.49)

where c1, c2, and c3 are the components of the vector (r Ð  ri) in the basis formed
by vectors (rj Ð ri), u, and v. Equation (4.49) may be represented in matrix form
as

r = 
x
y
z

 = 1Ðc1  I3    c1 I3    c2 I3    c3 I3  

ri

rj

u
v

 = C qe  (4.50)
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where I3 is the identity matrix of order (3x3) and qe is the vector of the natural
coordinates. As in the planar case, the matrix C is independent of the system's
motion and therefore remains constant with time. Again, the following relations
are obtained:

r = C q e (4.51)

r = C q e (4.52)

The coefficients c1, c2, and c3 that define C can be expressed as a function of
the coordinates of the points i and j and unit vectors u and v in the local refer-
ence frame in the following way:

r Ð  ri = c1  (rj Ð  ri) +  c2  u +  c3  v (4.53)

Equation (4.53) expressed in matrix form becomes

r Ð  ri = rj Ð  ri | u | v  
c1
c2
c3

 = X c (4.54)

where the vector c contains the coefficients c1, c2, and c3, and the matrix X  has
as columns the components of the vectors (rj Ð  ri), u, and v . As in the planar
case, the matrix X  can always be inverted (provided (rj Ð  ri), u, and v  are non-
coplanar). Equation (4.54) can be used to solve for c:

c = X
Ð1

 (r Ð  ri) (4.55)

We have gathered all the information necessary to formulate the virtual power
of the inertia forces generated within the spatial element. The integral form of
the virtual power becomes

W * = Ð r r*T r dW
W

 (4.56)

where r is the mass density. Making use of equations (4.51) and (4.52), equation
(4.56) becomes

W
*
 = Ð r q

*T
 C

T
 C q dV

V

  = Ð q
*T

 r  C
T
 C dV

V

 q (4.57)

where again the vectors q*T and q, which are independent of V, have been moved
out of the integral. Comparing (4.31) with (4.57) we obtain the expression for
the mass matrix

M = r CT  C dV
V

(4.58)

The substitution of C into equation (4.57) yields
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Figure 4.5.  Element with three basic points and a unit vector.

M = r
V

 

(1Ðc1)
2 I3  (1Ðc1

 ) c1 I3 
(1Ðc1

 ) c1 I3 c1
2 I3

(1Ðc1
 ) c2 I3  (1Ðc1) c3 I3

c1c2 I3    c1c3 I3  

(1Ðc1
 ) c2 I3  c1c2 I3

(1Ðc1) c3 I3  c1c3 I3

c2
2 I3        c2c3 I3

c2c3 I3        c3
2 I3

 dV  (4.59)

The integration over the element of the product CTC involves the following
integrals:

r dV 
V

 = m (4.60a)

r  c dV 
V

 = X
Ð1

 r (r Ð  ri) dV 
V

 = m X
Ð1

 (rG Ð  ri) º  m  a (4.60b)

r c cTdV 
V

 = X
Ð1

 r (r Ð  ri) (r Ð  ri)
T
 dV 

V

 X
ÐT

 = X
Ð1

 J i X
ÐT

 º  Z (4.60c)

where m is the total mass of the element, and rG represents the local coordinates
of the element's center of gravity. The matrix Z can be formed from the matrix
Ji which contains all the information about the moments and products of inertia
of the element as in the planar case. Substituting the results of (4.60) into
(4.49), the following expression for the mass matrix is obtained:

M = 

mÐ2ma1+z11  I3  ma1Ðz11  I3  ma2Ðz12  I3  ma3Ðz13  I3 
ma1Ðz11  I3 z11 I3 z12 I3 z13 I3

ma2Ðz21  I3 z21 I3 z22 I3 z23 I3

ma3Ðz31  I3 z31 I3 z32 I3 z33 I3

(4.61)

The mass matrix defined by equation (4.61) is a constant and symmetric ma-
trix formed by diagonal sub-matrices of size (3´3). This matrix depends on a
minimum set of ten different values, since the inertia characteristics of a three-
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Figure 4.6.  Element with four basic points.
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Figure 4.7.  Element with two basic points and a unit vector.

dimensional solid depend on ten parameters: the mass, the coordinates of the cen-
ter of gravity, and the six different elements of the inertia tensor.

Other Elements with Constant Mass Matrix. Consider the element of Figure
4.5, determined by three non-aligned basic points and by one unit vector not con-
tained in the plane determined by the three points. This element may actually be
made similar to the one considered in the previous section (two points and two
unit vectors), by simply defining the missing unit vector v at point j as the vec-
tor that goes from j to k. Thus

v = rk Ð  rj  /  Ljk (4.62)

Now we can use (4.61) to obtain the virtual velocity and acceleration vectors:

ri

rj

u

v

 = 

 I3 0 0 0
0 I3 0 0
0 0 0  I3 

0 Ð 1
Ljk

 I3  1
Ljk

 I3 0

 

ri

rj

rk

u

 º  V  

ri

rj

rk

u

(4.63)

where the transformation matrix V is a (12´12) constant matrix. Equation (4.63)
may be expressed as

q =  V qnew (4.64)
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where q represents the components of the two points and two unit vectors, and
qnew are those of the new element represented by three points and one unit vec-
tor. Similarly, the relation between the virtual velocities will be

q* = V qnew
* (4.65)

The expression for the virtual power given by equation (4.31) can be used to
obtain the mass matrix of the element at hand. This can be done by simply sub-
stituting (4.64) and (4.65) into (4.31) to yield

W * = Ð  q*T M q = Ð  qnew
*T  VT M V qnew

* (4.66)

and, therefore, the new mass matrix becomes

Mnew = V T M V (4.67)

Since V is constant the new mass matrix will also be constant.
A similar situation arises with the type of element depicted in Figure 4.6,

which can also be made equivalent to an element with two points and two non-
coplanar unit vectors. In fact, the two unit vectors u and v located at points i and
j may be defined as

u = rk Ð ri  /  Lik (4.68a)

v  = rl Ð rj  /  Ljl (4.68b)

Equations (4.68) allow for the definition of a new transformation matrix V
as:

ri

rj

u
v

 =  

I3 0 0 0
0 I3 0 0

Ð 1
L jk

 I 3  0  1
L jk

 I 3  0

0  Ð 1
L jk

 I 3  0  1
L jk

 I 3

 

ri

rj

rk

rl

 =  V q  (4.69)

The matrix V is again constant and, therefore, it also relates virtual velocities
and accelerations as in (4.64) and (4.65). The new mass matrix is thus obtained
by the same equation (4.66) with V defined by (4.69).

Element with two points and one non-aligned unit vector. Figure 4.7 shows an
element with two basic points and one unit vector not aligned with them. The
coordinate transformation between the standard element consisting of two points
and two non-coplanar unit vectors, and the new one is not as simple to establish
as with the elements considered in the previous section. In the element of Figure
4.7, the vector v cannot be constructed non-coplanar with u by just a linear
combination of the position vectors of points i, j, and u.

A geometric transformation is needed in this case, and the method of con-
structing the vector v is to start from the following cross product of vectors:
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v = c ri Ð  rj  Ù  u (4.70)

where c is a constant that makes the vector v have a unit module. The differenti-
ation of equation (4.70) with respect to time yields

 v = c ri Ð  rj  Ù  u + c ri Ð  rj  Ù  u (4.71)

A transformation matrix V for velocities can now be constructed from (4.71)
as follows:

ri

rj

u

v

 =  

I3 0 0

0 I3 0

0 0 I3

Ðc u  c u  c rij

 

ri

rj

u

 =  V  q new (4.72)

where u and rij are skew-symmetric matrices of order (3x3) that correspond to the
cross product of vectors obtained with u and (riÐrj), respectively. These matrices
are written as follows:

u =  

0 Ðuz uy

uz 0 Ðux

Ðuy ux 0

(4.73)

rij =  

0 Ð ziÐzj   yiÐyj

  ziÐzj 0 Ð xiÐxj

Ð yiÐyj   xiÐxj 0

(4.74)

Equation (4.72) can be differentiated with respect to time so as to obtain the
corresponding equation for the accelerations. However, the matrix V defined by
equation (4.72) is no longer constant and, therefore, the differentiation process is
different from those appearing in the previous section:

ri

rj

u

v

 = 

I 3 0 0

0 I3 0

0 0 I3

Ðc u c u c rij

 

rj

ri

u

  +   

I 3 0 0

0 I3 0

0 0 I3

Ðc u c u c rij

 

ri

rj

u

 (4.75)

or

q = V  q new + V  q new (4.76)

The relation between the virtual velocities is

q
*
 =  V qnew

*
(4.77)

By substituting expressions (4.76) and (4.77) into the virtual power expres-
sion (4.31), we obtain

W
*
 = Ð  q

*T
 M q = Ð  qnew

*T
 V

T
 M (V qnew +  V qnew) (4.78)
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Figure 4.8.  Element with two basic points.

where M is the constant mass matrix corresponding to the element with two
points and two unit vectors. This equation contains the new mass matrix
Mnew=VTMV and velocity-dependent inertia terms defined by VTMVqnew to be
added to the external forces in the right-hand side of the equations of motion.
Note the simplicity by which these forces are obtained using the virtual power
method in which only the computation of V is required, as compared to the
Lagrange's equations. The latter would have required the differentiation of the
new mass matrix with respect to both time and q.

Element with two basic points. The use of an element with two basic points
only makes sense when it is used: first, to maintain a constant distance between
two points; and second, when its dimensions, other than the length, are negligi-
ble. As in the planar case, the motion of an element of this type is fully charac-
terized by the motion of the two basic points (See Figure 4.8). Any rotation
around the element axis is disregarded, an assumption that is valid only if the
moment of inertia about that axis is negligible.

The position vector of a generic point P can be defined in terms of the vari-
able s (Figure 4.8) as:

r = ri LÐs
L

 + rj 
s

L
 (4.79)

which may be expressed in matrix form as:

r = LÐs
L

  s

L
 

ri

rj
 = N(s) q (4.80)

Since the matrix N is independent of the motion, the velocity and acceleration
vectors will be given by

r =  N(s) q (4.81)

r =  N(s) q (4.82)

Consequently, the virtual power of the inertia forces is in this case:

W * = r
*T

 r r A ds 
0

L

(4.83)
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a) b)

Figure 4.9.  a) Element with two basic points and two coplanar unit vectors,
b) Element with four basic points and four coplanar unit vectors.

where A is the cross-sectional area of the bar. By substituting the results of ex-
pressions (4.81) and (4.82) in equation (4.83), the following expression is ob-
tained:

W
*
 = Ð q

*T
 N

T
 r A N q ds

0

L

  = Ð q
*T

  N
T
 r A N ds

0

L

 q (4.84)

Therefore the mass matrix is

M =   NT N r A ds 
0

L

= 

= 

  I3 LÐs

L

2
 r A ds

0

L

     I3 LÐs

L
  s

L
 r A ds

0

L

 

I3 LÐs

L
  s

L
 r A ds

0

L

 I3  s 2

L 2
 r A ds

0

L
 

(4.85)

where I3 is the unit (3x3) matrix. Assuming a constant density and cross sec-
tional area for the element, the following final expression for the mass matrix is
obtained:

M =  
 m
3

 I3  m
6

 I3 

m
6

 I3
m
3

 I3

  (4.86)

Mass matrix of other three-dimensional elements. All the three-dimensional
elements that may appear in practice, belong either to one of the groups studied
previously or contain a set of points and vectors whose mass matrix is known.
For example, the body in Figure 4.9b contains four basic points and four unit
vectors. Fortunately, one does not have to worry about calculating mass matrices
of elements as complicated as this one. It will be sufficient to take any two
points with which two non-coplanar unit vectors are associated and attribute the
corresponding mass matrix to the subset of points and unit vectors given by
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equation (4.61). The body's system of local coordinates will be located according
to the selected points and unit vectors. The inertia properties of the element,
such as center of gravity and inertia tensor, must be referred to those coordinates.

The element shown in Figure 4.9a, contains two basic points and two unit
vectors that are coplanar. For this reason, the mass matrix of equation (4.61),
which assumes that the unit vectors are non-coplanar, is not applicable.
Therefore, one of the two unit vectors must be selected and used in the virtual
power equation (4.78) corresponding to an element with two points and only one
unit vector.

Irrespective of the geometry and number of basic points and unit vectors of
any element of a multibody system, a subset of points and vectors can always be
found whose mass matrix corresponds to one of those calculated in the previous
sections.

4.2.3  Kinetic Energy of an Element

The formation of the mass matrices of different elements has been studied in the
previous sections through the application of the principle of virtual power.
Expressions for the kinetic energy of a body may be convenient, either because it
is of direct interest to evaluate the energy, or because one wishes to formulate
the equations of motion through another type of formulation, such as the method
of Lagrange.

The way of formulating the kinetic energy is rather similar to that used for
the virtual power of the inertia forces. The kinetic energy is defined by:

T = 1
2

 rT r r  dV  = 1
2

 r
v

 qT CT C q  dV
v

  (4.87)

Since the natural velocities are independent of V, they can be moved out of
the integral to yield

T =  1
2

 q
T  M q (4.88)

where q are the natural velocities of the element. The matrix M given by equa-
tion (4.61) corresponds to the element that has two non-coplanar points and two
unit vectors. In the other cases, the mass matrix may be formed by the coordi-
nate transformation matrix VTMV. The use of the Lagrange's equations for the
formulation of the equation of motions with non-constant mass matrices will
lead to the differentiation process explained in Example 4.1, which may become
involved in those cases where the mass matrix is coordinate-dependent. The ki-
netic energy is then given by

T =  1
2

 q
T  V T(q) M  V(q) q (4.89)
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Figure 4.10.  Concentrated force fP at point P.

4.3  External Forces

We deal in this section with the formulation of external forces, such as concen-
trated loads and moments that are applied to the elements of the multibody sys-
tem, and those generated from specific types of elements, like translational and
rotational springs. Although the forces generated by springs are not really exter-
nal, it is customary in multibody dynamics to include them as applied external
forces, as opposed to structural mechanics and the finite element formulation in
which those forces are considered as internal forces acting by means of the stiff-
ness matrix.

4.3.1  Concentrated Forces and Torques

This section with the analysis of concentrated forces and torques. The problem is
the representation of those forces and torques in terms of the natural coordinate
system used to represent the motion of an element.

Concentrated Forces. When a concentrated force is applied at a point P of an el-
ement that is not a basic point (See Figure 4.10), a transformation needs to be
introduced that will transform the forces at point P to the natural coordinates
(basic points and unit vectors) of the element. A typical case is the gravity force,
applied at the center of gravity of an element, which needs to be referred to the
natural coordinate system used to represent the motion of the given element. In
order to set up the required transformation, we can directly use equation (4.50)
applied to point P, so that

rP = CP qe (4.90)

where qe
 represents the natural coordinates of the element. The coefficients that

form the matrix CP can be obtained using equation (4.55), such that

c = X P
Ð 1

 (rP Ð  ri) (4.91)
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Figure 4.11.  Concentrated torque M acting on element (i-j).

The vector rP contains the coordinates of P in the local frame. The matrix CP
in equation (4.90) acts as a coordinate transformation matrix that may also be
used to transform the forces fP into equivalent forces, Qex

e , expressed in terms of
the natural coordinates of the element. We use for this purpose the principle of
virtual work and impose the condition that both sets of forces perform an equal
amount of virtual work. Accordingly,

dW = drP
T fP = dqeT Qex

e
(4.92)

Since drP 
T = dqeTCP

T
, equation (4.92) becomes

dW = dqeT CP
T
 fP (4.93)

Comparing equations (4.92) and (4.93), we obtain the following equation for
the force transformation:

Qex
e

 = C P
T

 fP (4.94)

The potential of this concentrated external force fP, acting at point P, is de-
fined by the expression:

V   = Ð   drP
T f q

qo

q

 = Ð  dqT C P
T

 f q
qo

q

 = Ð  dqT Q
qo

q

(4.95)

that is also valid for the case in which the force depends on the position. The dif-
ferential term dq has been intentionally placed in the left side of the integral, be-
cause this order leads to simpler and more congruent expressions for the deriva-
tives of V that are calculated in Chapter 6.

Concentrated Torques. The case of a concentrated torque can be dealt with in a
similar way as that for the concentrated force except for the addition of a preced-
ing and important transformation. In basic statics, any torque M may be replaced
by an equivalent pair of forces, f and Ðf, of equal magnitude and opposite direc-
tions, acting on a plane perpendicular to the direction of M, and separated by a
vector d. The result is: M=dÙf.
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Figure 4.11 shows a torque M acting on an element with basic points i and j,
which is substituted by a pair of forces f and Ðf applied at the beginning and end
of a unit vector uf with origin at ri. This unit vector is defined by:

uf = 
(rj Ð ri) Ù M

(rj Ð ri) Ù M
  (4.96)

and

f = u f Ù  M (4.97)

Note that vector uf does not belong to the natural coordinates vector qe. The
forces f and Ðf can now be treated as concentrated forces following the results of
the previous section. Accordingly, the virtual work expression becomes

 dW  = dqeT (Ci
T

 f Ð  C i+uf

T
 f) (4.98)

Therefore the equivalent generalized force with respect to the natural coordi-
nates finally results in

Qex
e

 = (Ci
T

 Ð  C i+uf

T
) f (4.99)

where Ci is very simply obtained in this case because i is a basic point. It will
be shown that  the force f given by equation (4.97) is the force variable conju-
gated with the displacement variable uf. The potential of the torque M  can be
calculated as the sum of the potentials of forces f and Ðf. This potential is

V  = Ð  dri
T

 f Ð  dri
T

 +  duf
T  f

qo

q

 = +  duf
T  f 

qo

q

 = Ð duf
T  M Ù  uf

qo

q

(4.100)

The forces f and Ðf can be treated as concentrated forces following the results
of the previous section. Accordingly, the expression for the potential becomes

V = Ð  dri
T  f Ð  dri

T  +  duf
T  f

qo

q

 = dqeT  (Ci
T

 Ð  C i+uf

T
) f

qo

q

(4.101)

4.3.2  Forces Exerted by Springs

Springs are elements capable of storing elastic potential energy and of exerting
forces that are a function of their positions. In addition, springs play an impor-
tant role in all but the kinematic problems. We study in this section the forces
exerted by both translational and rotational springs as well as the potential en-
ergy stored in them. As in previous sections, the study will be conducted within
the context of planar and three-dimensional natural coordinates.

Translational Springs Between Basic Points. Consider the translational spring
shown in Figure 4.12 which connects the basic points i and j. Let Lij and L0 be
the deformed and undeformed lengths of the spring, respectively. When the
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Figure 4.12.  Translational spring with mixed coordinates.

spring is stretched (or compressed), it exerts a force between the basic points in
the directions of the spring that is a function of the elongation. The value of the
force is given by

f = k Lij  Lij Ð L0 (4.102)

where k Lij  is the stiffness of the spring which will have a constant value k, if
the spring is linear.

In the planar case, according to Figure 4.12, the force vector that acts on the
basic points i and j can be expressed as follows:

Q = 

Qix

Qiy

Qjx

Qjy

 = f 

Ðcos y
Ðsin y
cos y
sin y

 = f
Lij

 

xi Ð xj

yi Ð yj

xj Ð xi

yj Ð yi

(4.103)

and in the three-dimensional case:

Q
T
 =  f

Lij

  xiÐxj  yiÐyj ziÐzj  xjÐxi  yjÐyi zjÐzi  (4.104)

Both f and Lij are functions of the natural coordinates. If the spring is linear
equation (4.104) becomes

Q
T
 = k 1 Ð Lo

Lij

   xiÐxj  yiÐyj ziÐzj  xjÐxi  yjÐyi zjÐzi (4.105)

It is important at times to evaluate the potential energy stored in spring ele-
ments (See Chapter 6). The potential energy stored by a translational spring is
equal to the integral of the force times the differential extension of the spring,
between the non-deformed state and the final deformed configuration. Considering
the coordinates of points i and j:
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Figure 4.13.  Translational spring between any two points.

V  = dqT Q
o

LÐLo

  = f dl
o

LÐLo

 (4.106)

When the spring is linear, the integration of equation (4.106) yields

V = 1
2

 k Lij Ð Lo
2
 = 1

2
 k xjÐxi

2
 + yjÐyi

2
 + zjÐzi

2
 Ð Lo

2

(4.107)

Translational Springs With Relative Coordinates. Equations (4.103) and
(4.104) define the spring forces in terms of the natural coordinates. However,
this formulation can be greatly simplified if the relative distance s between the
points i and j is introduced as a new dependent (mixed) coordinate through the
following constraint condition:

xi Ð xj
2
 + yi Ð yj

2
 + zi Ð zj

2
 Ð s 2 = 0 (4.108)

The force f can be directly entered into the formulation as the conjugate vari-
able of distance s with a value:

f = k(s) s Ð s0 (4.109)

where so= Lo, and s is equal to the deformed length. Proceeding with this mixed
type of coordinate representation, the formulation of the forcing terms becomes
much simpler at the expense of increasing the number of dependent variables by
one variable.
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If the dependent coordinate s is used, the potential energy of the spring is
simply given by

V = f ds
o

sÐso

 = k s  sÐso  ds
o

sÐso

(4.110)

Translational Springs Between Any Two Points. When the origin and end points
of the spring are not basic points but any two points corresponding to two dif-
ferent elements, equations (4.104) and (4.107) cannot be used.

As shown in Figure 4.13, it is necessary to construct the position vectors of
the origin and end of the spring, starting from the local coordinates of these
points at the local coordinates frames attached to the elements to which they be-
long. In the case of Figure 4.13, we can write:

r1 = ri +  A 1 (r1 Ð  ri) (4.111)

r2 = rk +  A 2 (r2 Ð  rk) (4.112)

where A1 and A2 are rotation matrices that depend on the natural coordinates of
the points and vectors of each element. In computing these rotation matrices, we
can express the local and global coordinates of the basic points and vectors that
belong to a rigid body as the columns of a (3x3) matrix X as follows:

X  º riÐrj  u  v  = A X = A riÐrj  u   v  (4.113)

Hence, the rotation matrix A can be found as

 A = X X
Ð1

 = riÐrj  u  v  X
Ð1

 (4.114)

Consequently, the rotation matrices corresponding to the rigid bodies to
which points 1 and 2 belong will be defined by

A 1 = X 1 X 1
Ð 1

 = riÐrj  u 1   v1  X 1
Ð 1

 (4.115)

A 2 = X 2 X 2
Ð 1

 = rkÐrl  u 2   v2  X 2
Ð 1

 (4.116)

Using the result of equation (4.90), we can write

r1 = C 1 q1
e (4.117)

r2 = C 2 q2
e (4.118)

Matrices C1 and C2, defined by equation (4.50), are constant matrices that
permit finding the global coordinates of points r1 and r2 in terms of the natural
coordinates of the elements to which they belong. Using matrices C1 and C2,
we can obtain two expressions similar to (4.94):

Q1
e
 = C1

T
 f1 (4.119)

Q2
e
 = C2

T
 f2 (4.120)
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Figure 4.14.  Rotational spring with mixed coordinates.

where f2 = Ð f1. The generalized forces Q1
e  and Q2

e
 are conjugated with the virtual

displacements dr1 and dr2, that can be defined as functions of dq by equations
(4.117) and (4.118). It is possible to write an expression for the potential energy
analogous to equation (4.106):

V  = k L
qo

q

 1 Ð Lo

L
 .   C 1 q1 Ð  C 2 q2 

ÐC 1 q1 +  C 2 q2

T

 C 1 dq1

C 2 dq2

(4.121)

and expanding the product of vectors,

V   = k L
qo

q

 1 Ð Lo

L
 . q1

T    q2
T   C1

T
 ÐC1

T

ÐC2
T

  C2
T

  C1 0
0 C2

  dq1

dq2

 =

 = k(L)
qo

q

 1 Ð Lo

L
 × dq1

T
  dq2

T
  C1

T
 C1  ÐC1

T
 C2

ÐC2
T

 C1  C2
T

 C2

  q1
q2

(4.122)

The length L that is the distance between points r1 and r2 can be computed
by using the formulae (4.117) and (4.118) to solve for the coordinates of r1 and
r2; and then to find the distance directly.

Rotational Springs. A rotational spring exerts, between the elements to which it
is connected, a torque about the common articulation of both elements; that is a
function of the relative angle twisted between them (Figure 4.14). Angles of
more than 360o are possible; therefore, it is necessary to take into account not
only the angle between both elements as calculated with the scalar or cross prod-
ucts of vectors, but also the number of complete turns that the rotational spring
may have gone through.
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Figure 4.15.  Special case of rotational springs.

Consider the planar rotational spring shown in Figure 4.14 in which y0 is
the angle corresponding to the non-deformed position of the spring. If the rela-
tive angular position of the elements is considered as a new mixed variable
(y+2np), the torque exerted on both elements will be directly given by

M = k(f) y + 2np Ð y0 (4.123)

Note that the new dependent coordinate y may be introduced by either one or
a combination of the following constraint conditions:

rij × rjk = Lij Ljk cos y (4.124)

rij Ù rjk  = Lij Ljk sin y (4.125)

In addition, the potential energy is given by

V = M y  dy
yo

y+2npÐyo

   = k y  yÐyo  dy
yo

y+2npÐyo

  (4.126)

Since y is one of the dependent coordinates of the system, no additional trans-
formation is required.

In the three-dimensional case, the situation is a little more complicated, par-
ticularly in the case in which the points i, j, and k are not in a plane perpendicu-
lar to the axis of the revolute joint. Here, the angle y in the joint is not the an-
gle formed by the segments (iÐj) and (iÐk), but the angle determined by two
straight lines normal to the axis of the pair. This can be seen in Figure 4.15. It
is assumed in this figure that the axis of the pair is determined by the unit vector
u. A similar and simpler formulation for the forces is obtained when the pair is
determined by two basic points.
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If the angle is introduced as a dependent coordinate, the expression for the po-
tential energy is immediate and responds to the same equation as that of the pla-
nar case (equation (4.126)). When the spring is linear,

V = 1
2

 k y + 2np Ð yo
2

(4.127)

where k is the spring constant.

4.3.3  Forces Induced by Known Acceleration Fields

The simplest case of forces induced by known acceleration fields are gravitational
forces. The gravitational force acting on an element is simply the product of its
mass m times the gravitational acceleration g, acting on the center of gravity rG:

f = Ð  m g (4.128)

and the potential of this force can be expressed as

V  = Ð m  rG
T g (4.129)

A matrix CG similar to that of expression (4.50) can be constructed for the
center of gravity to express its coordinates in terms of natural coordinates qe of
the element. Consequently the potential becomes

V  = Ð m  qeT CG
T
 g (4.130)

Another important case, is the one in which the external forces originate from
a known accelerations field. This situation arises when the fixed element is
moving in a prescribed mode or when the entire multibody system is subjected
to a rotation.

Let vo and W be the velocity of the origin and the angular velocity vector, re-
spectively, of the reference coordinate frame whose motion is known. The accel-
eration of this system is defined by vo, W , and WWWW  which are known. Using the
principles of relative motion (Greenwood (1988)), the motion with respect to a
moving reference frame can be studied as if it were an absolute motion, introduc-
ing as known external forces all the inertia forces corresponding to the motion of
the frame. Assuming a standard element with two basic points i and j and two
non-coplanar unit vectors u and v, these accelerations are:

r i = WWWW  Ù  ri +  WWWW  Ù WWWW  Ù  ri  +  v o (4.131)

r j = WWWW  Ù  rj +  WWWW  Ù WWWW  Ù  rj  +  v o (4.132)

u = WWWW  Ù  u  +  WWWW  Ù WWWW  Ù  u (4.133)

v =  WWWW  Ù  v  +  WWWW  Ù WWWW  Ù  v (4.134)

As a consequence of these accelerations, the vector of inertia forces Qin
e

 acting
on the element is,
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Qin
e

 = Ð  M
e
 

ri

rj

u

v

 = Ð  M
e
 q

e
(4.135)

where Me is the mass matrix developed in Section 4.2.2. The potential of these
forces, which is position dependent, will be

V   = Ð dqeT Qin
e

qo

q

 = Ð  dqeT M
e
 q

e
 

qo

q

(4.136)

One will find these expressions useful for carrying out the dynamic analysis
of a multibody system evolving in a known field of centrifugal forces.
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Problems

4/1 Using equation (4.48), find the inertia matrix (with respect to points i and j) of
the 2-D element shown in the figure, in the following cases:
a) The element has a concentrated unit mass located at i.
b) The element has a concentrated unit mass located at j.
c) The element has a concentrated unit mass located at point (0,1)
d) The element has a concentrated unit mass located at point (0,Ð1)
e) The element consists of a disk with its center at i, having unit radius, and uni-
formly distributed unit mass.

4/2 Using the results of Problem 4/1 and admitting the possibility of inertia matri-
ces corresponding to negative masses, to eliminate mass from a real rigid body,
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find the concentrated masses at points (0,0), (1,0), (0,1), and (0,Ð1), so that the
resulting mass matrix is:

 0   0   1   0  
0 0 0 1
1 0 0 0
0 1 0 0

y

xi j

1
i

j

s

Figure P4/1. Figure P4/3.

4/3 Find by integration of

  M q º m
L

 r(s) ds
0

L

the inertia matrix M  of an homogeneous 3-D bar and show that M  is in-
dependent of the position of the bar.
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Figure P4/4. Figure P4/5.

4/4 The inertia properties of a 3-D rigid body depend on ten parameters including the
mass m, the position of center of gravity rG, and the inertia tensor IG, defined on
a moving frame attached to the body. Show by intuitive reasoning (without al-
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gebraic calculations) that it is possible to find a (12x12) constant inertia matrix
in the global frame. Use as acceleration variables the Cartesian accelerations of
points 1, 2, 3, and 4.

4/5 A bar 1 connects two rigid bodies 2 and 3 through two spherical joints i and j.
The motion of bodies 2 and 3 is known, so the motion of the bar is known ex-
cept for the rotation around the direction i-j. There is a friction torque of con-
stant magnitude T and direction opposed to the relative angular velocity applied
at the joints i and j. Find the directions of torques Ti and Tj that guarantee the
complete equilibrium of the bar.


