
  

2 
Dependent Coordinates and 
Related Constraint Equations 

In either the kinematic or dynamic analysis of multibody systems described in 
Chapter 1, the first issue to consider is that of modeling the system, which in-
volves the selection of a set of parameters or coordinates that will allow one to 
define unequivocally at all times the position, velocity and acceleration of the 
multibody system. There are several ways to solve this problem, and different 
authors have opted for one way or another depending on their preferences or 
the peculiarities of their own formulation. 

Even though the same multibody system can be described with different 
types of dependent coordinates, their definition is not a trivial problem. They 
are all not equivalent in the sense that they will lead to formulations that are 
just as efficient or as easy to implement. In fact, there are in practical applica-
tions large differences both in efficiency and simplicity among the different sets 
of coordinates. We will provide some examples that corroborate this fact. 

The most important types of coordinates currently used to define the motion 
of planar and three-dimensional multibody systems are relative coordinates, 
reference point coordinates (also called Cartesian coordinates), and natural 
coordinates (also called fully Cartesian coordinates). These will be described in 
detail in this chapter. A qualitative comparison among them will also be 
provided. No general quantitative comparison is yet available, although some 
preliminary results for 2-D systems have been already published by Unda et al. 
(1987). We will also deal extensively with the constraint equations that the de-
pendent coordinates generate. A combination of the ideas and concepts arising 
from the different types of coordinates (relative, reference point, and natural) 
explained in this chapter, are the basis for very efficient dynamic formulations 
that will be seen in Chapter 8.  

 
2.1  Planar Multibody Systems 

Different sets of dependent coordinates for planar multibody systems and the 
related constraint equations are described below. These systems are a simpler 
alternative to the three-dimensional ones and make it easier to understand the 
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important concepts and the differences between the various types of dependent 
coordinates. 

The first dilemma encountered when choosing a system of coordinates which 
may describe the motion by position, velocity and acceleration is the problem of 
either adopting a set of independent coordinates, whose number coincides with 
the number of degrees of freedom and is thereby minimal, or adopting an ex-
panded system of dependent coordinates. The latter can describe the system 
much more easily, but they are not independent but instead related through 
certain constraint equations. 

Studies on this subject tend to conclude that generally a system of indepen-
dent coordinates is not an acceptable solution, because it does not meet one of 
the most important conditions: the system of coordinates should be capable of 
unequivocally describing the position of the multibody system. Independent co-
ordinates directly determine the position of the input elements or the value of 
the driven degrees of freedom but not the position of the other elements. In 
order to determine the position of the entire system, the position problem must 
first be solved. As was already explained in Chapter 1, there are multiple 
solutions to this problem. For example, the four-bar mechanism of Figure 2.1 
has one degree of freedom and one independent coordinate, the angle ϕ. It may 
be seen that there are two possible solutions for the position of the elements 3 
and 4. The same thing generally occurs with other multibody systems. 

Once the independent coordinates have been ruled out for the description of 
the position, a system of dependent coordinates larger than the number of 
degrees of freedom must be adopted to determine the position of each and every 
one of the bodies. Three major types of coordinates have been described in the 
literature: relative coordinates, reference point coordinates, and natural 
coordinates. These types of coordinates will be described in detail in the 
following sections, both for planar and three-dimensional multibody systems. 
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Figure 2.1. Solutions of the position problem in a four-bar mechanism. 
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An important aspect of the dependent coordinates is precisely their 
dependent nature, or in other words, the fact that they are related by algebraic 
constraint equations in a number equal to the difference between the number of 
dependent coordinates and the number of degrees of freedom. Constraint 
equations are generally nonlinear and play a main role in the kinematic and 
dynamic analysis of multibody systems. Therefore, the description of the 
dependent coordinates included below and their comparative study will be 
completed with the study of the specific constraint equations generated by each 
one of the types of dependent coordinates. The concept of constraint equation is 
not complicated and neither is its mathematical formulation. A very simple 
example will be presented next. 
 
 

Example 2.1 
 
Figure 2.2 illustrates a four-bar mechanism modeled with natural coordinates, i.e. 
with the Cartesian coordinates of points 1 and 2. There are four dependent coordi-
nates (x1, y1, x2, y2) and the mechanism has one degree of freedom. Hence, there 
should be three constraint equations relating the four dependent coordinates. 

The constraint equations shall guarantee that points 1 and 2 move in accordance 
with the limitations imposed on them by the three moving bars of the four-bar 
mechanism. It is precisely from there that the three constraint equations arise: from 
the fact of imposing the rigid body condition (a constant distance between points) on 
the three elements of the mechanism. These conditions can be formulated 
mathematically as follows: 

 (x 1 – x A)2 + (y 1 – y A)2 – L2
2 = 0 

 (x 2 – x 1)2 + (y 2 – y 1)
2 –  L3

2 = 0 

 (x 2 – x B)2 + (y 2 – yB)2 – L4
2 = 0 

These are the three constraint equations that correspond to the mechanism of 
Figure 2.2. It may be seen that they are nonlinear equations (quadratic in this case). 
A similar system of equations can be established for any other type of coordinates 
and for any other multibody system.  
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Figure 2.2. Representation of a four-bar mechanism using natural coordinates. 
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In the following sections, three types of dependent coordinates will be dis-
cussed: relative, reference point, and natural, both for planar and three-dimen-
sional systems. The generation of constraint equations will be studied in detail. 
For the case of planar multibody systems, the explanations will be illustrated 
with simple completely developed examples. 

 

 
2.1.1  Relative Coordinates 

Relative coordinates were the first ones used in the general purpose planar and 
three-dimensional analysis programs of Paul and Krajcinovic (1970), Sheth and 
Uicker (1972), and Smith et al. (1973). 

Relative coordinates define the position of each element in relation to the 
previous element in the kinematic chain by using the parameters or coordinates 
corresponding to the relative degrees of freedom allowed by the joint linking 
these elements. In the case of planar multibody systems, if two elements are 
linked by means of a joint R (revolute), their relative position is defined by 
means of an angle. If they are linked by a joint P (prismatic), their relative 
position is defined by means of a distance. Figure 2.3 shows two examples of 
mechanisms with four bars that are described with relative coordinates. 

Relative coordinates make up a system with a minimum number of 
dependent coordinates. In fact, in the particular case of open kinematic chain 
systems, as in Figure 2.3a, the number of relative coordinates coincides with 
the number of degrees of freedom; therefore there will not be constraint 
equations. Likewise, Figure 2.4 shows a more complicated mechanism modeled 
by means of relative coordinates. 
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Figure 2.3. Representation of a four-bar mechanism using relative coordinates 
(a) Open chain, (b) Closed chain. 
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The advantages of relative coordinates can be summarized as follows: 
 

1. Reduced number of coordinates, hence good numerical efficiency. 
2. Relative coordinates are specially suited for open-chain configurations. 
3. The consideration of the corresponding degree of freedom at each joint. This 

has an important advantage when the joint has a motor or actuator attached 
to it, since it allows to control the motion of the corresponding degree of 
freedom directly. 
 

The following are considered to be the most important difficulties of the 
relative coordinates: 

 

1. The mathematical formulation can be more involved, because the absolute 
position of an element depends on the positions of the previous elements in 
the kinematic chain. 

2. They lead to equations of motion with matrices that, although small, are full 
and sometimes expensive to evaluate. 

3. They require some preprocessing work (to determine the independent con-
straint equations) and postprocessing (to determine the absolute motion of 
each point and element). 
 

In the case of planar multibody systems formulated with relative coordinates, 
the constraint equations arise from the condition of the vector closure of the 
kinematic loops. 

 
 

Example 2.2 
 

If a mechanism has an open kinematic chain type (See Figure 2.3a), then there will 
not be any constraint equation. In the case of the four-bar mechanism shown in 
Figure 2.3b, there are three relative coordinates and one degree of freedom; therefore 
there should be two constraint equations. 

Vectorially, the condition of closed loop for the four-bar mechanism of figure 2.3b 
can be expressed as follows: 
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Figure 2.4. Multi-loop mechanism modeled with relative coordinates. 
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 OA + AB + BD – OD = 0  
This vector equation is equivalent to two algebraic equations which correspond to 

the components x and y of the previous equation 

 L1 cos Ψ1 + L2 cos (Ψ1 + Ψ2) + L3 cos (Ψ1 +Ψ2 +Ψ3) – OD = 0 

 L1 sin Ψ1 + L2 sin (Ψ1 + Ψ2) + L3 sin (Ψ1 +Ψ2 +Ψ3) = 0 

It may be seen that these equations are nonlinear and contain transcendental func-
tions. This is a common characteristic of all the multibody systems formulated with 
relative coordinates.  
 

 
Example 2.3 

 
Figure 2.5 shows a four-bar mechanism with a prismatic joint. The number of con-
straint equations is the same as before (two) and they also come from the vector 
closure of the only loop that the mechanism has 

 OA + AB + BD – OD = 0 
This is equivalent to the following algebraic expressions 

 L1 cos Ψ1 + Ψ3 cos (Ψ1 + Ψ2) + L3 cos (Ψ1 +Ψ2 – π 2) – OD = 0 

 L1 sin Ψ1 + Ψ3 sin (Ψ1 + Ψ2) + L3 sin (Ψ1 +Ψ2 – π 2) = 0 
It may be seen in these equations that since Ψ3 is not an angular coordinate, it is 

not affected by the sine and cosine functions.  
 

 
Example 2.4 
  
As a last example, let us consider the mechanism of Figure 2.6, which has six ele-
ments and one degree of freedom. This mechanism can be modeled with five relative 
coordinates. Then four constraint equations must be found. By examining the 
mechanism, it may be seen that there are three closed loops which satisfy the fol-
lowing vector equations: 
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Figure 2.5. Relative coordinates in a four-bar mechanism with a prismatic joint. 
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 OA + AB + BC + CE –  OE = 0 

 OA + AB + BD + DF – OF  = 0 

 FD + DC + CE – FE = 0 

These three vector equations give rise to six algebraic equations; however, only 
four of them are independent. Four equations can be chosen corresponding to any 
two of the three loops. For example, by using the first two loops, 
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Figure 2.6. Geometrical representation to generate the constraint equations with relative 
coordinates. 
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Figure 2.7. Alternative representation to generate the constraint equations with relative 
coordinates. 
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L2 cos Ψ1 + L3 cos (Ψ1+Ψ2) + BC cos (Ψ1+Ψ2+Ψ3) 

+ L5 cos (Ψ1+Ψ2+Ψ3+Ψ4) – OE cos β = 0
 

 
L2 sin Ψ1 + L3 sin (Ψ1+Ψ2) + BC sin (Ψ1+Ψ2+Ψ3) 

+ L5 sin (Ψ1+Ψ2+Ψ3+Ψ4) – OE sin β = 0
 

 
L2 cos Ψ1 + L3 cos (Ψ1+Ψ2) + BD cos (Ψ1+Ψ2+Ψ3+α) 

+ L6 cos (Ψ1+Ψ2+Ψ3+α +Ψ5) – OF cos γ = 0
 

 
L2 sin Ψ1 + L3 sin (Ψ1+Ψ2) + BD sin (Ψ1+Ψ2+Ψ3+α) 

+ L6 sin (Ψ1+Ψ2+Ψ3+α +Ψ5) – OF sin γ = 0
 

These equations make up a nonlinear system of four equations with five unknown 
variables also involving transcendental functions. 

Relative coordinates may be chosen in many different ways; and the one that was 
used in this example although perfectly valid may not necessarily be the best. Instead 
of beginning to establish relative coordinates from one of the fixed points to other 
fixed points, passing through all the joints on the mechanism, one can define relative 
coordinates from the three fixed points. Simultaneously one can advance and pass 
through all the joints, and in this way make the constraint equations simpler. Figure 
2.7 shows the mechanism of Figure 2.6 modeled according to this new criteria. 

Now the loop closure vector equations are: 

 OA + AB – OE – EC – CB = 0 

 EC + CD –  EF – FD  = 0 

thus, resulting in the following algebraic equations: 

 L2 cos Ψ1 + L3 cos (Ψ1+Ψ4) – OE cos β  – L5 cos Ψ2 – CB cos (Ψ2+Ψ5) = 0 

 L2 sin Ψ1 + L3 sin (Ψ1+Ψ4) – OE sin β  – L5 sin Ψ2 – CB sin (Ψ2+Ψ5) = 0 

 L5 cos Ψ2 + CD cos (Ψ2+Ψ5+α) – EF cos φ  – L6 cos Ψ3 = 0 

 L5 sin Ψ2 + CD cos (Ψ2+Ψ5+α) – EF sin φ  – L6 sin Ψ3 = 0 

These expressions are more manageable and easier to evaluate than their coun-
terparts as shown in Figure 2.6.  
 
From the previous example it may be concluded that relative coordinates are 

particularly suitable for open-Chains or with few closed loops. When relative 
coordinates are used in multibody systems with many closed loops, it is very 
important to correctly choose the independent loops with which the constraint 
equations will be formulated and at what point the loop is going to be inter-
sected or broken to establish the loop closure vector equation. In the previous 
example (Figure 2.7) the loops were intersected at B and D. This task is re-
ferred to as system preprocessing. In some computer implementations this can 
be automatically carried out using graph theory, but in others it is assumed that 
the preprocessing is carried out by the analyst. 
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2.1.2  Reference Point Coordinates 

The reference point coordinates try to remedy the disadvantages of the relative 
coordinates by directly defining, using three coordinates or parameters, the 
absolute position of each one of the elements of the system. This is done by 
determining the position of a point of the element (the reference point, which 
often is the center of gravity) with two Cartesian coordinates, and by 
determining with an angle the orientation of the body in relation to a system of 
inertial axes. Figure 2.8 shows two four-bar mechanisms represented with 
reference point coordinates. Note that although the two mechanisms are 
different, they both are modeled with the same coordinates. 

The reference point coordinates require a much larger number of variables 
than the relative coordinates (nine as compared to three in the four-bar 
mechanism, 15 as compared to five in the mechanism of Figure 2.6) and do not 
take into account at all if it is an open chain configuration or not. This means 
that for some particular cases, and from the numerical efficiency point of view, 
reference point coordinates may not be the most suitable ones. 

The advantages of reference point coordinates can be listed as follows: 
 

1. The position of each element is directly determined; hence the formulation is 
easier with less preprocessing and postprocessing requirements. 

2. The matrices appearing in the equations of motion are sparse, meaning that 
they have very few non-zero elements. If one takes advantage of this 
condition and uses special techniques for this type of matrices, then one may 
make the formulation numerically efficient. 
 

As mentioned earlier, the apparent disadvantages are their large number and 
the difficulty to be adapted for particular topologies such as open kinematic 
chains. 

Using reference point coordinates, one can develop the constraint equations 
by considering the constraints that the joints introduce in the relative motion of 
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Figure 2.8. Representation of two four-bar mechanisms using reference point coordi-
nates: a) Revolute joint, b) Prismatic joint. 
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contiguous elements. With these coordinates the motion of each element is de-
fined regardless of the motion of the rest of them. However, the motion of the 
adjacent elements, linked by a kinematic joint, cannot be arbitrary. Rather it 
must generate a relative motion between these elements according to the nature 
of the joint. For instance, a class I kinematic joint (it allows one degree of free-
dom of relative motion) will constrain two degrees of freedom for a planar sys-
tem. This means that it must also generate two constraint equations. 

 
 

Example 2.5  
 

Let us consider the four-bar mechanism of Figure 2.8a. This mechanism has nine 
dependent coordinates and one degree of freedom, meaning that there should be 
eight constraint equations. These eight equations will originate from the four 
kinematic joints (points O, A, B and D), with two equations per joint. 

The eight algebraic constraint equations are as follows (for the sake of simplicity, 
it will be assumed that the reference points are located at the middle points on the 
bars): 

 x 1 – x 0  – L1 2 cosΨ1 = 0 

 y 1 – y 0  – L1 2 sinΨ1 = 0 

 x 2 – x 1  – L1 2 cosΨ1 – L2 2 cosΨ2 = 0 

 y 2 – y 1  – L1 2 sinΨ1 – L2 2 sinΨ2 = 0 

 x 3 – x 2  – L2 2 cosΨ2 + L3 2 cosΨ3 = 0 

 y 3 – y 2  – L2 2 sinΨ2 + L3 2 sinΨ3 = 0 

 x 3 – xD  – L3 2 cosΨ3 = 0 

 y 3 – yD  – L3 2 sinΨ3 = 0 

It can be seen that these equations are more sparse (a lower number of variables 
intervenes in each one of them) than the ones corresponding to relative coordinates 
(see Example 2.2). Likewise, it is evident that the constraint equations are nonlinear 
and cause transcendental functions to come into play. 

Figure 2.8b shows a mechanism with four bars, three revolute joints, and one 
prismatic joint. The reference point coordinates are identical to the ones in the ar-
ticulated quadrilateral of Figure 2.8a, as are the constraint equations corresponding 
to joints O, A and D. However, the constraint equations corresponding to joint B 
change as follows: the first equation directly indicates the constant relationship 
existing between angles Ψ2 and Ψ3. 

 Ψ2 – Ψ3 – π 2 = 0 
The second equation is more complicated. In order to understand it better, one 

should carry out the graphic construction of Figure 2.9. Bear in mind that the G3-B 
segment is equal to the sum of the projections coming from segments M-G2 and M-
G3 which result in the following equation: 

 (y 2 – y 3) cos Ψ2 + (x 3 – x 2) sin Ψ2 – L3 2 = 0 
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It is very easy to generalize these results for any planar mechanism and for those 
cases where the reference point occupies an arbitrary position on the element.  
 

A very important characteristic of the reference point coordinates is that for 
the constraint equations corresponding to a particular joint, the only 
coordinates that intervene are the ones of the elements related to this joint. This 
means that, unlike relative coordinates, constraint equations are established at a 
local level; therefore a particular joint will always have the same ones 
regardless of the system's complexity. Thus the reference point coordinates do 
not require preprocessing like the relative ones do, and it becomes much easier 
to generate the constraint equations automatically on a computer program. 

The simplicity of reference point coordinates and the related constraint equa-
tions in 2-D cannot be extrapolated to 3-D directly, because in the latter case 
there are many more types of joints and the definition of orientation is more 
complicated. 

 

 

2.1.3  Natural Coordinates 

Natural coordinates represent an interesting alternative to relative coordinates 
and reference point coordinates. These coordinates were originally introduced 
by García de Jalón et al. (1981) and Serna et al. (1982) for planar cases, and 
García de Jalón et al. (1986 and 1987) for spatial systems. 

In the case of planar multibody systems, natural coordinates can be 
considered as an evolution of the reference point coordinates in which the 
points are moved to the joints or to other important points of the elements, so 
that each element has at least two points (See Figure 2.10). 

It is important to point out that since each body has at least two points, its 
position and angular orientation are determined by the Cartesian coordinates of 
these points, and the angular variables used by reference point coordinates are 
no longer necessary. It will be seen later on that this simplifies the formulation 
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Figure 2.9. Detail of the representation of a prismatic joint. 
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of the constraint equations along with the fact that points can be shared at the  
joints. 

Thus the natural coordinates in the case of planar multibody systems are 
made up of Cartesian coordinates of a series of points. We will call these the 
basic points, and they are distributed throughout the entire mechanism. These 
points should be chosen according to the following rules or criteria: 

 

1. Each element should have at least two basic points for the motion to be de-
fined. 

2. There should be a basic point in each revolute joint R. This point is shared 
by the two elements linked at this joint. 

3. Each prismatic joint P links two bodies, and the two basic points at one of 
these determine the direction of the relative motion. Although one of the ba-
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Figure 2.10. Evolution of the reference point coordinates to the natural coordinates. 
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Figure 2.11.  Representation of the mechanism of Figure 2.6 in natural coordinates. 
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sic points of the other body can be located on the segment determined by the 
two basic points of the first one, this is not absolutely necessary. 

4. In addition to the basic points that model the body, any other important 
point of any body can be selected as a basic point, and its coordinates would 
then automatically become part of the set of unknown variables. 
 

The number of natural coordinates tends to be an average between the num-
ber of relative coordinates and the number of reference point coordinates. For 
example, in the mechanisms of Figure 2.10, the number of natural coordinates 
is four and six respectively, as opposed to three and three relative coordinates, 
and nine and nine reference point coordinates. The reason for the decrease in 
the number of coordinates is due, on one hand, to the elimination of the angular 
coordinates and, on the other hand, to the sharing of the basic points (located at 
the joints R) by two or more bodies. Thus, they have the advantage of describ-
ing the position of bodies with a reduced number of unknowns. 

Figure 2.11 shows the six-body mechanism of Figure 2.6 modeled with natu-
ral coordinates. In this example and in the previous ones, another characteristic 
of the natural coordinates can be observed: preprocessing and postprocessing 
are practically not required. In fact, once the basic point coordinates are known, 
drawing the position of the mechanism on a plotter or on a terminal is abso-
lutely trivial. Drawing the velocity and acceleration vectors of the different 
points is just as easy. 

Finally, it should be pointed out that perhaps the most important advantage 
of natural coordinates is their easy formulation and implementation from a pro-
gramming standpoint. As may be seen in the next paragraphs, the constraint 
equations and their Jacobian matrix are very easy to evaluate. Some numerical 
tests performed by Unda et al. (1987) have shown that for some 2-D multibody 
systems the advantages mentioned for natural coordinates versus reference 
point coordinates can be translated into some reductions in calculation times. 

Even though natural coordinates can be explained as an evolution of 
reference point coordinates, in reality their history is quite different. In fact, 
natural coordinates historically came about as an adaptation of the displace-
ment method for matrix analysis of structures to the analysis of multibody 
systems. A multibody system can be considered as an underconstrained struc-
ture that lacks bars or elements, therefore becoming unstable. Van der Werf 
(1979) and Van der Werf and Jonker (1985) developed a multibody analysis 
method entirely based on the finite element method. The difference between the 
method proposed by these authors and the one described in this book is that 
while the former remained entirely based on the principles of the finite element 
method, the method based on natural coordinates has been entirely reformu-
lated mathematically; so it can be introduced and considered as a new method 
expressly developed for analysis of multibody systems. 

It has been shown in the previous sections how the relative coordinates lead 
to constraint equations that are originated from closed loops of the system. The 
constraints with reference point coordinates originate in the kinematic joints. 
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Further on, it will be seen how the constraint equations originate for two 
sources when using natural coordinates: 

 

1. Rigid body condition of each element. 
2. Constraints corresponding to some kinematic joints. 

 

A four-bar mechanism modeled with natural coordinates was shown in 
Example 2.1. Its three constraint equations come from the constant length 
condition for each one of the moving bars. No joint constraint was present for 
this case. A second example in which joint constraints appear is given below: 

 
 

Example 2.6 
 

Figure 2.12 shows a four-bar mechanism with one prismatic joint modeled with nat-
ural coordinates. There are six coordinates and one degree of freedom, which means 
that there should be five constraint equations. These equations can be obtained as 
follows. In the first place, the mechanism in question has three elements each of 
which contains two points. It must be guaranteed that these elements move as rigid 
bodies. To do this, the following three constant length conditions must be imposed: 

 (x 1 – xA)2 + (y 1 – y A)2 – L2
2 = 0 

 (x 2 – x 1)
2 + (y 2 – y 1)

2 – L3
2 = 0 

 (x 2 – xB)2 + (y 2 – y B)2 – L4
2 = 0 

In the case of the fixed points A and B, the constraint equations are automatically 
taken into account when considering that their coordinates do not vary. Note that the 
revolute joints do not generate any constraint equation. In the case of the revolute 
joint located at point 1 the joint constraints also have been automatically taken into 
account, when considering that 1 is a point common to or shared by elements 2 and 
3. As long as point 1 belongs and contributes to the definition of both elements, the 
only possibility of relative motion that these elements have is that of relative rota-
tion. 
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Figure 2.12. Four-bar mechanism with a prismatic joint modeled with natural 
coordinates. 
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The two remaining equations will originate in the prismatic joint. In this 
kinematic pair, the adjacent elements do not share anything; therefore two equations 
are required to constrain the two relative degrees of freedom eliminated by the 
prismatic joint. 

The first equation originates by imposing point 3 be permanently aligned with 
points 1 and 2. This can be done in two ways. The first way is by imposing the 
following condition of proportionality: 

 x3 – x1

x2 – x1
 = y3 – y1

y2 – y1
 

This equation can also be expressed as follows: 

 (x 3 – x 1) (y 2 – y 1) – (x 2 – x 1) (y 3 – y 1) = 0 

An equivalent result can be obtained by imposing the constant area condition 
(zero area, in this case) of the triangle determined by points 1, 2 and 3. Using the 
formula of the determinant, whose value is equal to twice the area of the triangle, 

 det 
1 x 1 y 1

1 x 2 y 2

1 x 3 y 3

 = 2 A123 = 0 

By expanding the determinant, the following equation is obtained: 

 (x 2 – x 1) (y3 – y1) – (x3 – x1) (y2 – y1) = 0 
which coincides with the equation obtained previously. The advantage of the area 
formula is that it can be applied to non-aligned points, forming a triangle with a 
constant area. For example, in the mechanism of Figure 2.12, the area of the triangle 
(1-2-B) is constant, because segment (B-3) moves perpendicular to segment (1-2). 
This means that the previous equation could be substituted by the equation: 

 det 
1 x 1 y 1

1 xB y B

1 x 2 y 2

 – 2 A12B = 0 

and by expanding the determinant 

 (x B – x 1) (y 2 – y 1) – (x2 – x1) (yB – y1) – 2 A12B = 0 

One more equation still remains to be obtained, the one corresponding to the 
condition that the angle between elements 3 and 4 is maintained constant. This 
condition, when the angle does not have a value close to 0o, can be imposed by 
means of the scalar or dot product of vectors (1-2) and (B-3), 

 (x 2 – x 1) (x 3 – x B) + (y 2 – y 1) (y 3 – y B) –  L3 L4 cos φ  = 0 

where φ is the angle formed by both elements.  
 
Let us now consider the constraint equations corresponding to angular quan-

tities. When the angle is close to 0o, the scalar product is not valid for imposing 
the constant angle condition, and the cross product of vectors must be used in-
stead (more specifically, in the case of planar systems, the z component of the 
cross product). In turn, the cross product is not valid when the angle has a 
value close to ±90o. The reason for this can be understood by observing the two 
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parts of Figure 2.13. The scalar product keeps the angle between the segments 
constant by controlling the projection of one over the other. In Figure 2.13a, the 
angle φ cannot be changed without changing the projection of segment (i-k) on 
(i-j). However in Figure 2.13b, where φ is zero, the angle can vary infinitesi-
mally without varying the projection of (i-k) on (i-j). Therefore the scalar prod-
uct is not a good method for driving an angle when it is zero or close to zero. 
The same statement is valid when the angle is near 180o. 

On the other hand, the module of the cross product is related to the area of 
the triangle determined by the three points, which means that the cross product 
uses the area of the triangle to control the angle. It may be seen in Figure 2.l4a 
that small variations in the angle φ produce significant variations in the area of 
the triangle; while in Figure 2.14b it is observed that when φ is equal to or close 
to 90o, small variations of φ do not produce any variation in the value of the 
area. From this it can be concluded that the cross product is not valid for 
driving the value of the angle when the latter has a value close to 90o. The φ = 
180o case is similar to theφ = 0o case, and the φ = –90o case is similar to the φ = 
90o case.  

The cross product can be formulated by means of the well 
known determinant formula. In the case of Figure 2.14: 
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Figure 2.13. Variation of the scalar product in terms of the angle φ. 
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Figure 2.14. Variation of the triangular area in terms of the angle φ. 
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 det  
ux  uy uz

xk – x i  yk – yi 0
x j – x i  yj – yi 0

 = (xk – x i) (yj – yi) – (xj – xi) (y k – y i)

 

(2.1) 

and equating this value to twice the area of the triangle (i-j-k), we obtain 

 (x k – x i) (y j – y i) – (x j – x i) (y k – y i) – 2 A ijk = 0 (2.2) 

 
 

Example 2.7 
 

Accordingly, it is not difficult to establish the constraint equations corresponding to 
the prismatic pair of the mechanism shown in Figure 2.15, which is formed by a 
telescopic element. The two constraint equations required can originate from the zero 
area (alignment) condition of triangles (1-2-3) and (2-3-4). 

 (x2 – x1) (y3 – y1) – (x3 – x1) (y2 – y1) – 2 A123 = 0 

 (x3 – x2) (y4 – y2) – (x4 – x2) (y3 – y2) – 2 A234 = 0 
 

 
It should be clear at this point how to establish the constraint equations for 

prismatic planar joints. In regard to the rigid body constraints of elements 
defined by more than two basic points, there are a few particular cases that 
should be analyzed in detail. 

 
 

Example 2.8 
 

Figure 2.16 shows three elements with more than two basic points in each one of 
them. The element in Figure 2.16a is standard, and its rigid body condition can be 
established by imposing the constant length condition on the three sides of the 
triangle, 
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Figure 2.15. Mechanism with a telescopic joint. 
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 (x i – x j)
2 + (y i – y j)

2 – Lij
2 = 0 (i) 

 (x j – x k)
2 + (y j – y k)

2 – Ljk
2  = 0 (ii) 

 (x k – x i)
2 + (y k – y i)

2 – Lki
2  = 0 (iii) 

These three equations are not valid, however, for the element in Figure 2.16b 
where the three points are aligned. In principle, the three equations (i)-(iii) could 
also be valid in this case. It can be realized that they are not independent and there-
fore are not capable of guaranteeing that the element will move as a rigid body. The 
reason for this is that point k can be separated infinitesimally from segment (i-j) 
without varying the distances to points i and j.  

The solution to the problem of the element in Figure 2.16b is to substitute one of 
the equations (i)-(iii) for the zero area condition of the triangle (i-j-k) which guaran-
tees that k will be aligned with i and j. This equation is as follows: 

 (x k – x j) (y j – y i) – (x j – x i) (y k – y i) = 0 (iv) 

However, this is not the only possible solution. An easier solution can be obtained 
by adopting the following constraint equations for the element in figure 2.16b: 

 (x i – x j)
2 + (y i – y j)

2 – Lij
2 = 0 (v) 

 (x j – x i) – C (x k – x i) = 0 (vi) 

 (y j – y i) – C (y k – y i) = 0 (vii) 

where C is a constant whose value is (Lij/Lik). Equation (v) is a constant distance 
condition. Equations (vi) and (vii) indicate that the segment (i-j) is equal to segment 
(i-k) scaled by the constant C. Note that both segments always have the same 
direction. 

Equation (iv) is a little more complicated than equation (iii). Even though both of 
them are quadratic, equation (iv) involves three points, while equation (iii) only 
involves two. On the other hand, equations (v)-(vii) are one quadratic and two linear; 
whereas equations (i)-(iii) are all quadratic. 

Regarding the body in Figure 2.16c, bear in mind that it has four basic points, 
therefore eight coordinates, and that it has three degrees of freedom as a rigid body 
moving on the plane. Thus, it is necessary to establish five constraint equations. An 
immediate solution is to establish the constant length condition for the four sides of 
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Figure 2.16. Different types of elements with more than two basic points. 
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the body and for one of the two diagonals. This guarantees that the element will be 
non-deformable. These equations are as follows: 

 (x k – x i)
2 + (y k – y i)

2 – Lki
2  = 0 

 (x l – x k)
2 + (y l – y k)

2 – Llk
2  = 0 

 (x j – x l)
2 + (y j – y l)

2 – Ljl
2 = 0 

 (x i – x j)
2 + (y i – y j)

2 – Lij
2 = 0 

 (x l – x i)
2 + (y l – y i)

2 – Lli
2 = 0 

However, another possibility exists which results in simpler equations. This 
solution will insure the non-deformability of the triangle (i-j-k) by means of the 
following equations: 

 (x i – x j)
2 + (y i – y j)

2 – Lij
2 = 0 

 (x k – x i)
2 + (y k – y i)

2 – Lki
2  = 0 

 (x k – x j)
2 + (y k – y j)

2 –  Lkj
2  = 0 

Then the condition is imposed that the vector (i-l) be expressed as a linear 
combination of vectors (i-k) and (i-j), with coefficients α and β properly determined: 

 (x l – x i) – α (x k – x i) – β (x j – x i) = 0 

 (y l – y i) – α (y k – y i) – β (y j – y i) = 0 

The advantage of these last two equations lies in the fact that they are linear in-
stead of quadratic.  
 
As before, constraint equations can also be generated for planar elements 

with any number of basic points. The generation of constraint equations with 
natural coordinates can be easily automated on a computer program. No 
preprocessing is required and the resulting equations are sparse. In addition, 
the natural coordinates generate quadratic or linear constraint equations. These 
equations are easier to evaluate than the transcendental equations obtained with 
both relative and reference point coordinates. 

 
 

2.1.4  Mixed and Two-Stage Coordinates 

It was mentioned previously that one of the advantages of the relative 
coordinates is the possibility of directly accounting for the relative degrees of 
freedom permitted by the joints. This type of coordinates allows the direct 
inclusion of motors or actuators at the joints with no further difficulties. On the 
other hand, neither natural coordinates nor reference point coordinates have 
this advantage. However, mixed coordinates can solve this problem. Mixed 
coordinates are obtained by adding, to natural coordinates or to reference point 
coordinates, angular or linear variables corresponding to the degrees of freedom 
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of the system joints. It is very easy to add relative coordinates to natural 
coordinates, as can be seen in the next example. 
 
 

Example 2.9 
 

A mechanism with six Cartesian (natural) and two relative coordinates can be seen 
in Figure 2.17. 

The constraint equations that must be added, because of the introduction of angle 
Ψ and distance s, come from the scalar product of vectors and are, respectively 

 (x 1 – xA) (x 2 – x 1) + (y 1 – y A) (y 2 – y 1) – L1A L12 cosΨ = 0 

 (x 3 – x 1)
2 + (y 3 – y 1)

2 – s 2 = 0 

An angle Ψ different from 0o or 180o has been assumed in order for the scalar 
product to define the relative angle.  
 
When considering mixed coordinates, joint variables do not replace the other 

coordinates; rather they are simply added to them. When increasing the number 
of dependent coordinates without modifying the number of degrees of freedom, 
one should increase the number of constraint equations by the same amount. 

Some authors as Jerkovski (1978) and Kim and Vanderploeg (1986) use two 
different coordinate systems in two stages of the analysis. First they describe the 
mechanism using reference point coordinates, and then they perform the 
analysis using relative coordinates, hoping this will be more effective. This 
successive use of two different types of coordinates is also called velocity 
transformations, and should be distinguished from the use of mixed 
coordinates. Velocity transformations can improve the efficiency significantly 
and will be considered in more detail in Chapters 5 and 8. 
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Figure 2.17.  Four-bar mechanism with a prismatic pair modeled with mixed coordi-
nates. 
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2.2  Spatial Multibody Systems 

The same types of coordinates discussed in the previous section for planar 
multibody systems also apply to three-dimensional ones. Although the formula-
tion is at times substantially more complicated, the basic concepts hardly differ, 
therefore the explanations tend to be quite straightforward. 

The general principles and guidelines for constraint equations in three-
dimensional multibody systems will be developed next. In this case, the 
constraint equations corresponding to relative and reference point coordinates 
will not be developed in detail as previously done for the case of planar systems, 
because they are much more involved. Following this is a general description of 
the basic guidelines used for obtaining them. Natural coordinates and mixed 
coordinates will be explained in detail. 

 
 

2.2.1  Relative Coordinates 

The main difference regarding the use of relative coordinates, between three-di-
mensional multibody systems, and the planar ones, is the great variety of joints 
that appear in the three-dimensional case and the fact that many of these joints 
allow more than one degree of freedom of relative motion. It is also necessary 
to introduce a relative coordinate for each one of the degrees of freedom 
permitted by the joint. Thus a ball-joint or spherical joint (S) introduces three 
rotations, a cylindrical joint (C) one rotation and one translation with 
coincident axes, and so forth. 

Some authors propose to simplify the problem and minimize the number of 
possibilities that may arise with all the types of joints by combining the revolute 
joints (R) and/or the prismatic joints (P), thus creating a combination of joints 
with a single degree of freedom. This substitution is carried out by introducing 
fictitious elements with zero mass and dimensions. For example, a cylindrical 
joint can be substituted by a prismatic joint and a revolute joint by simply in-
troducing an intermediate element. A spherical joint can be substituted by three 
revolute joints with concurrent axes forming 90o angles between them. 
Consequently any multibody system can be transformed by this substitution 
method into an equivalent one with more elements containing only R and P 
joints. The analysis should be thus considerably simplified. 

Robots constitute a specific case of three-dimensional mechanisms in which 
the relative coordinates are especially effective and suitable. Usually, robots are 
open chain systems with revolute and/or prismatic joints and with an actuator 
controlling each one of these joints. These are the ideal conditions for relative 
coordinates. In fact they are the ones used almost exclusively in robotic applica-
tions. Relative coordinates in three-dimensional multibody systems and the cor-
responding matrix formulation for the constraint equations were introduced by 
Hartenberg and Denavit (1963). Other authors (Sheth and Uicker (1972), 
Wittenburg and Wolz (1985)) developed three-dimensional computer codes 
based on this type of coordinates. 
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The advantages and disadvantages of relative coordinates in three-
dimensional multibody systems are similar to those described for planar ones. 
The degree of involvement of the resulting formulation grows at a higher order 
with the addition of the spatial  dimension. 

Similar to the planar case, constraint equations are generated, with three-di-
mensional relative coordinates, by closing the kinematic loops. In the case of 
three-dimensional configurations, the constraint equations are usually 
formulated in matrix form instead of vectorially using the Hartenberg and 
Denavit (1963) method and notation. This technique usually starts by reducing 
all the class II joints, III etc., to class I joints. As explained previously this is 
done by introducing as many fictitious elements as required. 

For binary links, a system of Cartesian coordinates rigidly attached to each 
one of the moving elements is defined next (See Figure 2.18). In this way, axis 
Zi coincides with the axis of the pair (R or P) that joins the elements (i–1) and 
(i). Axis Xi is drawn along the common normal line to axes Zi and Zi+1. Axis Yi 
is the normal common to axes Xi and Zi. The key to the Hartenberg and Denavit 
method is that it is possible to find a (4×4) transformation matrix iTi+1(yi+1) that 
permits passing from the frame (Xi+1, Yi+1, Zi+1) to the frame (Xi, Yi, Zi). 

This matrix depends on a series of constant lengths and angles that are 
characteristic of element (i), and of the joint variable ψi+1 which will be an 
angle or a distance depending on whether it is a revolute or prismatic joint. If 
element (i) has more than 2 joints, it will be necessary to define as many local 
frames as needed for it (all of them will have axis Zi in common) and the corre-
sponding (4×4) transformation matrices between the reference frames. 

The constraint equations with relative coordinates are established by 
carrying out all the coordinate transformations along a closed loop of the 
multibody system and by imposing the condition that the product of all those 
transformations be the unit matrix (one will end up at the original axis). A loop 
can also be intersected by a specific element to obtain the transformation matrix 
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Figure 2.18.  Hartenberg and Denavit representation of a binary element. 
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between the fixed element and that element in two ways, equating the 
corresponding results. 

In the loop shown in Figure 2.19, the closure matrix equation would be as 
follows: 

 T1
0 (ψ1) T 2

1 (ψ2) T 3
2 (ψ3) T 4

3 (ψ4) T 0
4 (ψ0) = I  (2.3) 

where iTi+1(ψi+1) is the (4×4) matrix that permits the transformation from frame 
(i+1) to frame (i), which depends on the coordinate ψi+1. Starting from the ma-
trix equation (2.3), one can obtain the corresponding algebraic equations by for-
mulating the matrix product and equating the sufficient number of elements of 
the left hand side to the corresponding elements of the unit matrix. When 
closing a loop, there are many more equations available than needed. The 
problem lies in correctly choosing the equations so that they will be inde-
pendent and that the solution they provide will suit all the other equations. This 
second condition is hard to meet. What is usually done is to gather more 
constraint equations than required and to solve at the time of analysis an over 
determined system of equations using, for instance, a least square method. This 
enables one to solve the problem, even at the price of a greater computational 
effort.  

 
 

2.2.2  Reference Point Coordinates 

In the case of three-dimensional multibody systems, reference point coordinates 
define the position of an element by means of the Cartesian coordinates of one 
of its points and by means of the angular orientation of a reference frame, 
rigidly attached to the element, in relation to an inertial or fixed reference 
frame. As is well known, the definition of the angular orientation of two frames 
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Figure 2.19.  Series of Hartenberg and Denavit transformations. 
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is a classical problem of mechanics that has received different solutions 
(Argyris (1982)). One way of unequivocally defining this orientation is by 
means of the nine elements of the rotation matrix A, whose columns contain 
the three direction cosines for each one of the moving axes in relation to the 
fixed frame. The nine elements of the matrix A are not independent, but are 
related by means of six equations (a unit module for each column and 
orthogonality between the three columns). The main drawback is that no subset 
of three elements of the matrix A is capable by itself of unequivocally 
representing the orientation of the moving frame at any possible position. 

Various three-parameter systems have been developed to solve this problem 
that define the relative orientation between the two reference frames. The best 
known ones are the Roll, Pitch, and Yaw rotations or Tait-Bryant angles (a suc-
cession of three rotations which carry the moving frame from the position of the 
fixed frame to its final position: α around the Z axis, ß around the Y axis, and γ 
around the X axis; and the well-known Euler angles (See Figure 2.20). The 
problem is that all the existing three-parameter systems have singular positions 
in those locations where these parameters are not defined unequivocally. For 
example, for Euler angles when the nutation angle θ is zero, the node line N is 
not defined (neither are the precession angle ψ and the rotation angle ϕ, al-
though their sum is still defined). This shortcoming can be corrected by chang-
ing one of the coordinate frames every time the movable body approaches a 
singular position. For instance, the moving frame can be rotated in relation to 
the element on the mechanism to which it is linked. This approach will solve 
the problem but tends to complicate the implementation on a computer 
program. Reference point coordinates with Euler angles were used, for 
instance, by Orlandea et al. (1977). 
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Figure 2.20.  Euler angles. 
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Some other programs based on reference point coordinates use sets of four 
non-independent parameter systems to describe the angular orientation of the 
elements. These systems do not have the drawbacks of the three-parameter 
systems. However, they pay the price as the number of coordinates is increased 
(seven instead of six for each element). There is also the additional problem of 
having to take into account the constraint equation that relates the four 
parameters . 

The simplest and easiest to understand of the four-parameter systems is that 
which defines the orientation of the moving frame by means of a rotation angle 
ψ around an axis defined by the three direction cosines of the unit vector u. 
This axis and angle represent the rotation that must be transmitted to the fixed 
frame to make it coincide with the moving one (See Figure 2.21). 

The relation that exists between these four parameters is that the module of 
the axis direction vector u should be the unit value, thus 

 ux
2 + uy

2 + uz
2 = 1 (2.4) 

In practice, the four-parameter system used the most is not the one 
suggested, but one made up of the so-called Euler parameters, that is closely 
related to the former. The Euler parameters are defined as follows: 

 p1 = ux  cos ψ 2  (2.5) 

 p2 = uy  cos ψ 2  (2.6) 

 p3 = uz cos ψ 2  (2.7) 

 p4 = sin ψ 2  (2.8) 
The constraint equation for Euler parameters is easily found to be: 

 p1
2 + p2

2 + p3
2 + p4

2 = 1 (2.9) 
The Euler parameters have a very interesting set of properties summarized 

by Wittenburg (1977), Nikravesh et al. (1985), Nikravesh (1988), and Haug 
(1989). There are simple detailed expressions in these references to express the 
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Figure 2.21.  Description of the orientation and motion of a rotating axis. 
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angular velocity and the angular acceleration of any element in accordance with 
the Euler parameters and their derivatives. Euler parameters are used in many 
computer programs for multibody simulation. 

Some programs based on reference point coordinates use variables for the 
velocities (called quasi-velocities), which are different from the derivatives of 
the coordinates used to describe the position. Thus, Nikravesh et al. (1985) use 
Euler parameters to describe the position and components of the angular 
velocity vector ω to describe the velocities. The reason is that the 
indetermination encountered in position is not found in velocities and 
accelerations; thus the number of variables is minimized and the problem is 
simplified. Bear in mind that the angular velocity vector ω is not an integrable 
variable. There are no set of three parameters whose derivatives are the three 
components of the angular velocity vector. Therefore, in order to describe the 
position, one must rely on the Euler parameters. 

In the case of three-dimensional multibody systems, the reference point coor-
dinates have advantages and disadvantages similar to those encountered in 
planar systems. That the number of coordinates becomes larger is an added 
difficulty, and the description of spatial orientation and the formulation of 
constraint equations according to the terms of the Euler parameters is 
somewhat more complicated. The following references: Wittenburg (1977), 
Shabana (1989), and Huston et al. (1978), contain detailed descriptions of 
formulations based on the Euler parameters. 

With reference point coordinates the constraint equations originate from the 
kinematic joints. The constraint equations corresponding to spherical (S), revo-
lute (R), and prismatic (P) joints will be examined separately. Equations corre-
sponding to other joints can be found in a similar way. 

 
Spherical Joint. Two elements are linked by means of a spherical pair simply 
when they have one point in common. Let P be this point, and Oi and Oj be the 
reference points for the two elements, where two systems of coordinates rigidly 
attached to these elements are located (See Figure 2.22). 
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Figure 2.22. Spherical joint. 
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The condition that P is a common point belonging to both 
elements can be written vectorially: 

 ri + s i – rj – s j = 0 (2.10) 
where all the vectors are expressed in the absolute coordinate system. 
Expressing the vectors si and sj in their local frames and using the rotation 
matrices Ai and Aj, equation (2.10) becomes 

 ri + A i s i
i  – rj – A j s j

j  = 0 (2.11) 
which is the constraint vector equation equivalent to the three algebraic equa-
tions that restrict the three degrees of freedom prevented by the spherical joint. 
In equation (2.11), the two local position vectors for point P (isi and jsj) are con-
stant. The reference point coordinates are given by vectors ri and rj; whereas 
the Euler angles, or Euler parameters, appear in matrices Ai and Aj.  
 
Revolute Joint. The revolute joint (See Figure 2.23) restricts five degrees of 
freedom; and therefore five constraint equations must be found. 

The revolute pair can be defined in various ways. The first and perhaps the 
easiest way, is by means of two spherical pairs, that is, by making the two ele-
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Figure 2.23. Revolute joint. 
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Figure 2.24. Prismatic joint. 
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ments share two points positioned on the rotational axis. In this case, two vec-
tor equations formulated like the one in equation (2.11) can be obtained, thus 
resulting in six algebraic equations, out of which only five are independent. 
Whether or not it will be necessary to eliminate one or the other of the equa-
tions from one of the points will depend on the orientation of the joint's axis. 

However, the most natural way to impose a revolute joint between two con-
tiguous bodies is to establish the compatibility condition between the axis direc-
tion and one common point on the axis. According to Figure 2.23 we can write: 

 ri + A i s i
i  – rj – A j s j

j  = 0 (2.12) 

  A i ui  – A j uj  = 0 (2.13) 
where iu and ju are the coordinates of a vector on the axis expressed in the local 
reference frames attached to bodies (i) and (j). Only two equations are 
independent in equation (2.13). 

 
Prismatic Joint. The prismatic joint also generates five constraint equations, 
but in this case no point is shared. A possible modeling of a prismatic joint will 
be described next. 

Let ri and rj be the reference point position vectors of the two elements 
shown in Figure 2.24, and Pi and Qi be two points belonging to element (i), 
whose position vectors on the local axes of the element are ipi and iqi, respec-
tively. Pi and Qi are positioned on the axis of the prismatic pair. Pj and Qj are 
two points similar to the previous ones, belonging to element (j) and also posi-
tioned on the axis of the prismatic joint. 

Four of the five constraint equations originate from imposing the condition 
that the four points Pi, Qi, Pj and Qj remain aligned. This condition can be im-
posed with the corresponding proportionality among the vector coordinates 
being aligned or with the following cross products of vectors: 

 (A i ( qi
i  – pi

i )) ∧ ((rj + A j pj
j ) – (ri + A i pi

i )) = 0 (2.14) 

 (A j ( qj
j  – p j

j )) ∧  ((ri + A i pi
i ) – (rj + A j p j

j )) = 0 (2.15) 
where the symbol ∧ stands for cross product. 

Equation (2.14) guarantees that points Pi,  Qi and Pj are aligned; whereas 
equation (2.15) guarantees the same for points Qj, Pj and Qi. 

Each one of the equations (2.14)-(2.15) give rise to two independent alge-
braic equations, which should be chosen among the three available equations in 
accordance with the direction of the axis of the prismatic pair (the component 
corresponding to the largest direction cosine for this axis shall be eliminated). 

Equations (2.14) and (2.15) correspond exactly to the equations generated by 
a cylindrical joint. In order to find the additional 5th equation, that is 
characteristic of the prismatic joint, it is necessary to avoid the possibility that 
elements (i) and (j) have relative rotation with respect to the joint's axis. This is 
achieved by imposing the condition that two vectors, each fixed at a body and 
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not parallel to the axis, will maintain a constant angle. Assuming that the angle 
does not have a value close to 0o, this condition can be imposed by means of the 
scalar product of vectors as follows: 

 (A i pi
i ) ⋅ (A j pj

j ) – LPi Oi LPj Oj cos α = 0  (2.16) 
whereupon the joint is perfectly defined. 

The reference point coordinates and the generation of the 
corresponding constraint equations have been extensively dealt 
with in Nikravesh (1988) and Haug (1989). 

 
 

2.2.3  Natural Coordinates 

In the case of three-dimensional multibody systems, the natural coordinates de-
scribe the position of each element by means of the Cartesian coordinates of the 
basic points distributed throughout the elements and by means of the Cartesian 
components of several unit vectors as seen in the example of Figure 2.25. Each 
element of the system should have a sufficient number of points and vectors 
linked to it; so that their motion completely defines that of the element. 
 
 

Example 2.10 
 

Figure 2.25 shows an RSCR spatial mechanism with four elements and one degree of 
freedom. There are three basic moving points (1, 2 and 3) and two fixed points (A 
and B). There is one moving unit vector u1 and two fixed vectors uA and uB.  
Element 2 is made up of basic points A and 1, and the unit vector uA. Element 3 is 
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Figure 2.25. RSCR spatial mechanism. 
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made up of points 1 and 2 and vector u1. Element 4 is made up of points 3 and B and 
vectors u1 and uB. Each element has at least two points and one unit vector not 
aligned with the points; therefore their position and motion completely defines that 
of the element. The mechanism in Figure 2.25 has a total of 12 natural coordinates. 
This number is an average between the number of relative and reference point 
coordinates, since the same mechanism would have four, five or six relative 
coordinates (depending on how it is modeled) and 18 or 21 reference point coordi-
nates, depending on whether Euler parameters or Euler angles were used. 

 
 
Figure 2.26 shows several possible elements of a three-dimensional mecha-

nism modeled with natural coordinates. There are many more possible com-
binations of unit vectors and points. One indispensable condition is that the 
motion of the element be defined by means of the motion of its points and vec-
tors. This does not occur in the element in Figure 2.26a, as the coordinates for 
the element's two points are not capable of describing the angular position or 
the rotation around the line connecting these points. This rotation is determined 
with all the remaining elements in Figure 2.26, except for Figure 2.26b, which 
requires the unit vector to not be collinear with the direction determined by the 
two points. 

The modeling of a three-dimensional mechanism with natural coordinates 
can be carried out following these general rules and recommendations: 

 

1. The elements must contain a sufficient number of points and unit vectors so 
that their motion is completely defined. 

2. A basic point shall be located on those joints in which there is a point com-
mon to the two linked elements. This happens at the spherical joint (S), at 
the revolute joint (R), at the universal joint (U), and at other kinematic 
joints. 

3. A unit vector must be positioned at those joints having a rotational or trans-
lational axis and should have the direction of the corresponding axis. 
Sometimes the role performed by a unit vector can also be performed by a 
couple of basic points. 

a) b)

c) d)  
Figure 2.26. Modeling different spatial elements with natural coordinates. 
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4. Some joints, such as the universal joint (U), have their own particular re-
quirements concerning the introduction of points and unit vectors. These re-
quirements will be studied later on when the constraint equations introduced 
by each joint are discussed. 

5. All points of interest, whose positions are to be considered as a primary un-
known variable of the problem, can likewise be defined as basic points. 

6. Each unit vector is associated with a specific basic point, and the same sin-
gle unit vector can be associated with several basic points. For example, on 
the robot's arm of Figure 2.27 there are three rotational joints whose axes 
have the same direction. It is not necessary to enter three different unit vec-
tors which would substantially increase the number of unknown variables, 
but to enter only a single unit vector that is associated with three basic 
points. A minimum of 21 Cartesian variables are required for this robot. 
 

In the case of three-dimensional multibody systems, the natural coordinates 
also provide a simple formulation and implementation. The complexity of the 
mathematical formulation increases linearly when moving from 2-D to 3-D ap-
plications, because it only suffices to add new points to the model and a new 
term to the equations coming from the scalar product of vectors. This may be-
come more advantageous than the formulations based on rotational variables, 

u 3
u 2

u1

u 1

1

2

3

45 u1

u 0

 
 

Figure 2.27. Modeling of a spatial robot arm with natural coordinates. 
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in which the complexity increases at a faster rate by use of rotation matrices 
with transcendental functions, etc. As in the case of planar multibody systems, 
the need for preprocessing and postprocessing is minimal when using natural 
coordinates. 

The fundamental topics of the formulation of the kinematic constraint equa-
tions will be addressed next. In the case of three-dimensional multibody 
systems, the constraint equations with natural coordinates also originate in two 
ways: 

 

1. from the rigid body condition of the elements and 
2. from some of the kinematic joints that exist among them. 

 

In the sequel the constraint equations corresponding to both 
cases will be formulated separately. 
 
2.2.3.1  Rigid Body Constraints 

The natural coordinates corresponding to three-dimensional multibody systems 
have been introduced previously. These coordinates are made up of the 
Cartesian coordinates of certain points and by the Cartesian components of 
certain unit vectors. Each element and its motion are defined by a set of points 
and unit vectors rigidly attached to it. There are many different combinations of 
points and unit vectors that can be formed when defining an element. Some of 
the most commonly used combinations can be seen in Figures 2.28-2.33. It will 
be explained below how rigid body constraints can be found for the elements in 
these figures. Some cases of particular interest will be studied. 

 

Element with two points. The element in Figure 2.28 has only two basic points 
and does not have any unit vector. This means that its rotation around the line 
connecting these basic points is not defined. At any position, the element will 
behave as if it had only five degrees of freedom. Taking into account that it has 
six natural coordinates (three Cartesian coordinates for each point), it must 
have one rigid body constraint equation. This equation is precisely the constant 
distance condition between points i and j that can be imposed using the scalar 
product of the relative position vector between both points: 

 
 
 

i

j
Lij

 
 
 

k

j
i

 

Figure 2.28. Element with two basic 
points. 

Figure 2.29. Element with three non-collinear 
basic points. 
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 rij ⋅ rij – L ij
2 = 0 (2.17) 

where rij is the relative position vector. Equation (2.17) can be formulated as 
follows: 

 xj – xi
2 + yj – yi

2 + zj – zi
2 – Lij

2 = 0 (2.18) 
that is a quadratic equation in the natural coordinates. 

 

Element with three non-collinear points. The three-dimensional motion of 
the element in Figure 2.29 is fully represented by the motion of its three basic 
points. It has nine natural coordinates and six rigid body degrees of freedom. 
Therefore, it will be necessary to formulate three constraint equations which 
could correspond to the three following constant distance conditions: 

 rij ⋅ rij – Lij
2 = 0 (2.19) 

 rjk ⋅ rjk – L jk
2  = 0 (2.20) 

 rki ⋅ rki – Lki
2  = 0 (2.21) 

 

Element with three collinear points. When the three points are aligned 
(Figure 2.30), the three equations (2.19)-(2.21) are not independent, since point 
k can move infinitesimally without varying its distance to the other two points. 
Since the element has nine natural coordinates and five degrees of freedom, it 
will be necessary to find four constraint equations. One of them is the constant 
distance condition between points i and j: 

 rij ⋅ rij – L ij
2 = 0 (2.22) 

The other three equations originate from imposing the condition that vector 
rij is a specific constant α multiplied by vector rik: 

 rij – α rik = 0 (2.23) 
Equation (2.22) is quadratic, and the three algebraic equations that originate 

from the vector equation (2.23) are linear. 
 

Element with two points and one unit vector. The element in Figure 2.31 
contains two basic points and one non collinear unit vector. It has nine natural 
coordinates and six degrees of freedom which give rise to three constraint equa-
tions. These equations are the result of the constant distance condition between 
points i and j: 

i
k

j

 
 

Figure 2.30. Element with three collinear basic points. 
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 rij ⋅ rij – L ij
2 = 0 (2.24) 

the constant angle condition between unit vector um and vector rij: 

 rij ⋅ um – Lij cos φ = 0 (2.25) 
and the unit module condition of vector um: 

 um ⋅ um – 1 = 0 (2.26) 
Equations (2.25) and (2.26) can be formulated algebraically as follows: 

 (x j – x i) ux
m + (yj – yi) uy

m + (zj – zi) uz
m – Lij cos φ = 0 (2.27) 

 (ux
m)

2
 + (uy

m)
2
 + (uz

m)
2
 – 1 = 0 (2.28) 

If the unit vector is aligned with points i and j (angle φ equal to zero), the el-
ement will have five degrees of freedom. In this case, the four constraint equa-
tions will be 

 rij ⋅ rij – Lij
2 = 0 (2.29) 

 rij – α  um  = 0 (2.30) 
where α is a constant. The three algebraic equations corresponding to equation 
(2.30) are linear. There is not much need in defining a unit vector in the 
direction of a known segment, because unit vectors are used for determining 
directions. In this case, the direction has already been determined. It is always 
possible that the unit vector may be introduced for other reasons such as the 
condition of compatibility with an adjacent body. 

 

Element with two points and two unit vectors. The body of Figure 2.32 has 
two basic points and two non-coplanar unit vectors. Thus, it has 12 natural 

i
j

φ

um

 
Figure 2.31. Element with two basic points and a unit vector. 
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Figure 2.32. Element with two basic points and two unit vectors. 
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coordinates and six degrees of freedom. It will be necessary to find six con-
straint equations. These six conditions are: one constant distance equation, 
three constant angle conditions (between the two vectors and the segment, and 
between the two vectors themselves), and two unit module conditions for the 
unit vectors. The corresponding equations become: 

 rij ⋅ rij – Lij
2 = 0  (2.31) 

 rij ⋅ um  – Lij cos φ  = 0  (2.32) 

 rij ⋅ un – Lij cos ψ = 0 (2.33) 

 un ⋅ um – cos γ  = 0 (2.34) 

 um ⋅ um – 1 = 0 (2.35) 

 un ⋅ un – 1 = 0 (2.36) 
Several interesting cases can be discussed concerning this element. If one of 

the angles between segment (i-j) and unit vectors um and un is zero, it will be 
necessary to proceed as stated in the previous case. The same will occur if the 
angle γ  between the two unit vectors is zero (or 180o); then the two unit vectors 
will be equal (or one is the opposite of the other). Strictly speaking, it would not 
be necessary to consider two different unit vectors. It could be assumed that it is 
the only vector associated to two different points. This would be the case of the 
element with two points and one vector studied previously. If it is wished that 
the two vectors be included, the following considerations will have to be made. 

If the two unit vectors are coplanar, equations (2.31)-(2.36) are not linearly 
independent and do not guarantee a rigid body condition for the element. In 
order to find the constraint equations corresponding to this case, one should 
take into account that if un and um are coplanar, one of them (for example un) 
can be expressed as a linear combination of um and segment (i-j). The 
constraint equations would then be: 

 rij ⋅ rij – Lij
2 = 0 (2.37) 

i
j

k

ψ
γ

φ

un um

 
 

Figure 2.33. A more complex body representation. 
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 rij ⋅ um – Lij cos φ = 0 (2.38) 

 um  ⋅ um  – 1= 0 (2.39) 

 un  – α  1 rij – α  2 um = 0 (2.40) 
where α1 and α2 are the constant scalar coefficients of the linear combination. 
Equation (2.40) is the equivalent to three linear algebraic equations. 

 

More complex elements. The example in Figure 2.33 is one of the many 
examples that may be created with a large number of points and unit vectors. 
For all the elements, the number of required constraint equations is always 
equal to the number of natural coordinates minus the number of rigid body de-
grees of freedom, which normally will be six. The constraint equations are al-
ways determined in the same way: 1. impose the constant distance conditions, 
2. impose the necessary constant angle conditions so that the direction of the 
unit vectors is established, and 3. impose the unit module conditions. 

For more complicated elements, the following steps can simplify the process 
of obtaining the constraint equations and improve the results: 

 

1. Three vectors that can generate a base in the three-dimensional space are 
chosen. These vectors can be rij segments that link two basic points or unit 
vectors. 

2. The constraint equations which guarantee that the three vectors chosen form 
a rigid body are formulated. 

3. The remaining vectors of the body (segments and unit vectors) are expressed 
as a linear combination of the three vectors that form the base frame. The 
advantage is that all the equations obtained in this way are linear. 
 

For example, in the body of Figure 2.33, segments (i-k) and (i-j) and the unit 
vector un can be used as base vectors. The equations that guarantee that these 
three vectors form a rigid body are the six indicated below: 

 rij ⋅ rij – Lij
2 = 0 (2.41) 

 rik ⋅ rik – Lik
2  = 0 (2.42) 

 rij ⋅ rik – Lij  Lik cos φ  = 0 (2.43) 

 rij ⋅ un – Lij cos ψ = 0 (2.44) 

 rik ⋅ un – Lik cos γ   = 0 (2.45) 

 un ⋅ un – 1 = 0 (2.46) 
The remaining vectors (such as vector um) can be expressed as a linear com-

bination of the base "vectors" 

 um  – α1 rij – α2  rik – α3 un = 0 (2.47) 
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where α1, α2, and α3 are the coefficients of the linear combination. 

2.2.3.2  Joint Constraints 

Once all the constraint equations which guarantee that each element moves as a 
rigid body have been entered, it is necessary to formulate the constraints that 
also guarantee that the bodies have relative motions in accordance with the 
kinematic joints that link them. It will be shown how, in the case of certain 
joints, it is not necessary to introduce any additional equations. In other cases 
this will have to be done. The spherical (S), revolute (R), cylindrical (C), 
prismatic (P), and the universal (U) joints will be considered below. Other types 
of joints will be discussed later on in other sections of the book. 

 

Spherical joint (S). The spherical joint (Figure 2.34) is one of the joints that 
does not generate any constraint equation. The kinematic constraints 
corresponding to the spherical joint are automatically entered when two 
adjacent bodies share a basic point as in the case of planar systems with 
revolute joints. In fact, when two bodies share a point, the only possibility for 
relative motion is a rotation around this point. This rotation could be any one at 
all, just as it should be with the spherical joint. 

The constraint equations for the spherical joint can also be defined when the 
basic point is not shared, such as when the joint is going to be broken in a spe-
cific moment of the simulation. It will suffice to match the coordinates of points 
i and j belonging to different bodies 

 xi – xj = 0 (2.48) 

 yi – yj = 0 (2.49) 

 zi – zj = 0 (2.50) 
 

Revolute joint (R). The revolute joint is considered automatically (with no 
need for constraint equations) when two adjacent elements share a basic point 
and a unit vector. Then the only possibility of relative motion is the rotation 
around this unit vector (Figure 2.35). 

Another possible way of automatically introducing the revolute joint is by 
making two adjacent elements share two basic points (Figure 2.36). In this case 

 
Figure 2.34. Spherical joint. 
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the only possibility of relative motion is the rotation around the axis that goes 
through those two basic points. 

A revolute joint can also be entered in the formulation (without sharing any 
variable) by matching the coordinates of two points and the components of two 
unit vectors, each one belonging to a different element. 

 

Cylindrical joint (C). A cylindrical joint restricts four degrees of freedom, and 
should generate four constraint equations. In the cylindrical joint of Figure 
2.37, two elements share a unit vector in the direction of the joint axis. This is 
equivalent to two constraint equations, the two independent equations that 
would originate from the cross product of two parallel vectors, each one 
belonging to a different element. The other two constraint equations originate 
from the condition that two basic points on the joint's axis, each one belonging 
to a different element, are aligned with the unit vector. Mathematically, this 
condition is expressed by the following cross product: 

 rij ∧ u = 0 (2.51) 
where only two of the three algebraic equations of (2.51) are independent. 

Another way of introducing a cylindrical joint is by making four points (two 
in each element) permanently aligned on the joint's axis (Figure 2.38). In this 
case, the constraint equations originate from the following cross products of 
vectors: 

 rij ∧ rik = 0 (2.52) 

 rkl ∧ rkj = 0 (2.53) 

 
 

Figure 2.35. Revolute joint. 
 

 
 

Figure 2.36. Revolute joint defined with two points. 
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The first one imposes the condition that the points i, j and k are aligned; and 
the second imposes the condition that points k, j, and l are aligned. 

Figure 2.39 shows a third way of modeling a cylindrical joint. The four con-
straint equations are the result of imposing the conditions that point k and 
vector u remain aligned with points i and j. Mathematically, these conditions 
are expressed as follows: 

 rik  ∧ r ij = 0 (2.54) 
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Figure 2.37. Cylindrical joint. 
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Figure 2.38. Alternative way to model a cylindrical joint. 
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Figure 2.39. A third way to model a cylindrical joint. 
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 rij ∧ u = 0 (2.55) 
Each one of equations (2.52)-(2.55) gives rise to two independent algebraic 

equations. 
 

Prismatic joint (P). The prismatic joint P allows only one degree of freedom; 
and generates five constraint equations. These equations are the same ones that 
the cylindrical joint generates. In fact, all the degrees of freedom restricted by 
the cylindrical joint are also restricted by the prismatic joint. In addition one 
equation prevents relative rotation between the elements with respect to the 
joint axis. 

The three configurations of Figures 2.37, 2.38, and 2.39 are all possible for 
the prismatic joint. The fifth equation (characteristic of the prismatic joint) can 
be obtained by means of a scalar product between two vectors (one of each ele-
ment), which comply with the conditions of not being parallel to the joint's axis 
and not forming an angle close to 0o between them. If the angle is close to 0o, 
the scalar product should be substituted by the linear combination condition. 
For the joints in Figures 2.37, 2.38, and 2.39, the additional equations are 
respectively: 

 ri m  ⋅ rj n  – α1 = 0 (2.56) 

 ri m ⋅ rk n  – α2 = 0 (2.57) 

 ri m ⋅ rk n  – α3 = 0 (2.58) 
where m and n are appropriate points represented in Figure 2.38; and α1, α2, 
and α3 are scalar constants. 

 

Universal Joint (U). Figure 2.40 shows a drawing of a universal (Cardan) joint 
together with its modeling using natural coordinates. The universal joint re-
stricts four degrees of freedom. If the angle is fixed between the two axes, then 
the universal joint will only allow for one degree of freedom (it restricts five). 

In the model of the universal joint of Figure 2.40, vector um belongs to the 
same element as segment (i-j) and is orthogonal to it. Similarly, the unit vector 
un belongs to the segment (j-k) and is orthogonal to it. Therefore, point j is 

um

un

i
j

k

ψ

 
 

Figure 2.40. Universal joint. 
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shared by both elements. This condition is equivalent to three constraint condi-
tions even though no equation needs be formulated. Unit vectors um and un 
should be kept perpendicular to each other. This is the only equation that 
generates the universal joint to restrict the four degrees of freedom: 

 um ⋅ un = 0 (2.59) 
If the angle formed by the two axes is to remain constant, the following 

equation must be considered: 

 rij ⋅ rjk  – L ij Ljk  cos ψ  = 0 (2.60) 
This equation should be substituted by a component of the cross product of 

vectors if the angle ψ is very small. 
 
 

2.2.4  Mixed Coordinates 

As in the planar case, the Cartesian coordinates of points and of unit vectors, 
which make up the set of natural coordinates, can also be supplemented with 
angles, distances, or any other type of variables related to the degrees of free-
dom that describe the relative motion of the kinematic joints. It is easier to 
simulate in this way the driving of a multibody system by means of motors or 
actuators located at the joints. There will be as many new constraint equations 
as there are new coordinates. Figures 2.41a and 2.41b show an R joint and a P 
joint respectively with their corresponding angle and distance defined as mixed 
or relative coordinates. 

Consequently, mixed coordinates can be very useful for introducing 
variables as dependent coordinates which are directly related to the degrees of 
freedom permitted by the joints at which the actuators are connected. Only the 
prismatic and revolute joints will be considered here. 

 

Prismatic joint. The distance s, between two basic points (in the joint's axis) 
which belong to different elements, becomes the new coordinate to be 

 

s

a) b)

ψ

 
 

Figure 2.41. Introducing mixed coordinates in revolute and prismatic joints. 
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introduced. Any modeling carried out for the prismatic joint (Figures 2.37, 
2.38, and 2.39) contains the two basic points required to define the distance s. 
The additional constraint equation, assuming that i and j are located in the axis, 
is: 

 (xi – xj)
2 + (yi – yj)

2 + (zi – zj)
2 – s2 = 0 (2.61) 

This equation can also be used to define the conditions imposed by hydraulic 
actuators (or by linear motors), as may be seen in the mechanism of Figure 
2.42. Here the distance s is related to the volume of fluid contained in the actu-
ator, and its derivative depends on the corresponding flow. The variable s may 
or may not be known, depending on the conditions of the problem. 

 

Revolute joint. Mixed coordinates in three dimensional revolute joints are 
more complicated than those of prismatic joints. Consider the revolute joint, 
shown in Figure 2.43 and defined by sharing a point k and a unit vector u. 

A problem with the angle definition in this joint occurs when points i, j, and 
k are not located on a plane perpendicular to the unit vector and to the joint 
axis, because then the angle between segments (i-k) and (k-j) does not exactly 

 
 

Figure 2.42. Mechanism with hydraulic actuators. 
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Figure 2.43. Detail of the angle description in a revolute joint. 
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represent the angle rotated by the joint. However, if i' and j' are the projections 
of points i and j on the joint axis, then the angle formed by the two bodies be-
comes equal to the angle ψ formed by segments (i-i') and (j-j'). 

Segment (i'-i) is equal to segment (k-i) minus the projection of (k-i) on the 
joint axis. Segment (j'-j) can be determined in a similar manner. When the 
angle ψ is not close to 0o or to 180o, the corresponding additional constraint 
equation coming from the scalar product becomes: 

 (rk i   – (rk i ⋅u) u) . (rk j  – (rk j ⋅u) u) – Li ′i Lj ′j cos ψ = 0 (2.62) 

and by compacting this equation, one obtains 

 rk i ⋅rk j  – (rk i ⋅u) (rk j ⋅u) – Li ′i Lj ′j cos ψ = 0 (2.63) 

Only the first term of this equation depends on the coordinates of the basic 
points. The second term is a constant that only needs to be calculated once. The 
third term is the one that causes the angle ψ to intervene. The two distances, Li'i 
and Lj'j, are also constant. 

When the angle ψ is small or close to 180o, the scalar product of equation 
(2.62) should be substituted by the cross product of vectors as follows: 

 (rk i  – (rk i ⋅u) u) ∧ (rk j  – (rk j ⋅u) u) – u Li ′i Lj ′j sin ψ  = 0 (2.64) 

after expanding this equation, one arrives at 

 rk i  ∧ rk j  – (rk i ⋅u) u ∧ rk j  – (rk j ⋅u) rk i  ∧ u – u Li ′i Lj ′j sin ψ  = 0 (2.65) 

which is also a quadratic equation in the natural coordinates. The coefficients 
of the second and third terms (scalar products between brackets) are constants. 
Out of the three algebraic equations corresponding to the vector equation 
(2.65), it is only necessary to consider the equation corresponding to the largest 
component of vector u. 

Mixed coordinates will be used next to formulate the constraint equations 
corresponding to other types of joints, such as gear or helical joints. 

l

k

j
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Figure 2.44. Helical joint defined with mixed coordinates. 
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Helical joint. In Figure 2.44 a helical joint is represented. Basically, a helical 
joint can be seen as a cylindrical joint in which the translational and rotational 
degrees of freedom are not independent but related by the linear equation: 

 s = s0 + n ψ (2.66) 
where s0 is a constant, giving the value of s when ψ = 0. In equation (2.66) the 
translational and rotational mixed coordinates s and ψ previously introduced 
have been used. Equation (2.66), together with the constraints of a cylindrical 
joint described in Section 2.2.3.2, are the constraint equations of the helical 
joint. 

 

Gear joint. Figure 2.45 shows a possible modeling with mixed coordinates of a 
three-dimensional gear joint between axes 1 and 2 which cross but do not inter-
sect in space. The axis 1 is defined by points i and j, and the axis 2 is defined 
by points k and l. The two unit vectors un and um are fixed to axes 1 and 2, re-
spectively, and are used to complete the kinematic definition of the bodies 
related by the gear joint. 

Two points p and q located on axes 1 and 2, respectively, are used to define 
the line that is the common normal to both axes. In a gear joint, the angles ro-
tated by the axes are not independent but are related by a constant n defined by 
the quotient between the number of gear teeth. If ψ1 and ψ2 are the angles that 
measure both rotations and ψ20 is a constant initial value, the linear relation be-
tween angles ψ1 and ψ2 can be written as 

 ψ2 = ψ20 – n ψ1 (2.67) 
Angles ψ1 and ψ2 must be measured between the common normal line (p-q) 

and two straight lines that are normal to the axes 1 and 2 and that rotate with 
each of the gears. If vector um is normal to axis 1 and vector un is normal to 
axis 2, then angles ψ1 and ψ2 can be measured between these vectors and the 
normal line (p–q).  If this is not the case,  then two non-unit vectors vm and vn,  
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Figure 2.45. Gear joint defined with mixed coordinates. 
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belonging to bodies 1 and 2, respectively, can be obtained from um and un as 
follows: 

 vn = un – u
n ⋅ rij

Lij
2

 rij
 (2.68) 

 vm  = um – u
m ⋅ rkl

Lk l
2

 rkl
 (2.69) 

The position of points p and q can be established from the positions of points 
i, j, k, and l, in terms of two known constant coefficients α and β, as 
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Figure 2.46.  RSCR mechanism with reference point coordinates. 
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Figure 2.47.  RSCR mechanism with natural coordinates. 
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 rp = ri + α  (rj – ri) (2.70) 

 rq = rk + β (rl – rk) (2.71) 
The constraint equations of the gear joint can now be written. This joint re-

stricts five degrees of freedom and it is necessary to formulate five constraint 
equations. One of the constraints is given by equation (2.67), while the remain-
ing four equations must force the axes to maintain their relative spatial 
position, i.e., to maintain their angle and their relative distance: 

 rpq ⋅ rpq – C1 = 0 (2.72) 

 rpq ⋅ rji – C2 = 0 (2.73) 

 rpq ⋅ rlk – C3 = 0 (2.74) 

 rji ⋅ rlk – C4 = 0 (2.75) 
where C1 through C4 are constants. By substituting equations (2.70)-(2.71) into 
(2.72)-(2.75), four quadratic equations in the natural coordinates are obtained. 

 
 

2.3  Comparison Between Reference Point 
and Natural Coordinates 

In this section we present a comparative example between the reference point 
coordinates and the natural coordinates. In the previous sections we have 
shown how the natural coordinates represent a suitable choice of dependent 
coordinates and how to write the constraint equations. However, since the 
reference point coordinates are used in most of the multibody formulations, it is 
believed that a fully developed example can give a better idea to the reader of 
how both formulations compare. 

Consider again an RSCR linkage similar to the one presented in Figure 2.25, 
this time modeled using reference point coordinates with Euler parameters. The 
mechanism is composed of four links and has a single degree of freedom. Since 
seven variables (three coordinates of the center of gravity and four Euler 
parameters) are used for each movable link, a total of 21 dependent variables 
are necessary. The constant geometrical data, composed of vectors si that 
appears in the constraint equations, have also been represented in Figure 2.46. 

Following the notation of Nikravesh (1988), it can be shown that the 
Jacobian matrix (matrix of partial derivatives of the constraint equations) have 
the form shown in Table 2.1. 

The Jacobian matrix is of size (20x21) with 128 non-zero elements. Matrices 
Gi, S i  and S i

,
 are 

 Gi = 
–e1  e0 –e3  e2

–e2  e3  e0 –e1

–e3 –e2  e1  e0

 (2.76) 
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 S i = 
0 –siz siy

siz 0 –six

–siy six 0
 (2.77) 

 S i
,
 = 

0  –s'ix  –s'iy –s'iz
s'ix 0 s'iz –s'iy
s'iy –s'iz 0 s'ix
s'iz s'iy –s'ix 0

 (2.78) 

All the primed symbols are referred to the moving frame of the link to which 
it belongs. Therefore, all the vectors s 'i are constant, and their components in 
the absolute reference frame can be obtained through the rotation matrix as 

 s i = A i s i
,
 (2.79) 

Matrix Ai can be written in terms of the four Euler parameters as 

 A i = (2 ei 0
2  – 1 ) I3 + 2 (ei e i

T + ei 0 e i ) (2.80) 

with ei
T = {ei1  ei2  ei3}. 

The number of floating point arithmetic operations (products, additions, and 
substractions) required to compute the Jacobian matrix of Table 2.1 is 988. 

Let us now consider the same mechanism modeled with natural coordinates, 
as represented in Figure 2.47. In this case, 12 dependent variables are used 
which are the coordinates of points 2, 3, and 4, and the components of vector 
u2. The Jacobian matrix, of size (12×13), is presented in Table 2.2. 

Table 2.1.  Jacobian matrix of an RSCR mechanism with reference point coordinates 
and Euler parameters. 

 
 Φr1 Φp 1 Φr2 Φp 2 Φr3 Φp 3 

3 I 2 G1 S2
,
 0 0 0 0 

R       
3 0 2 S0 G1 S1

,
  0 0 0 0 

S     3 I 2 G1 S3
,
 –I – 2 G2 S4

,
 0 0 

2 0 0 0 – 2 S6 G2 S5
,
  0 2 S5 G3 S6

,
  

C       
 

2 
 
0 

 
0 

 

S5 
– (2 S5 G2 S7

,
 +

+ 2 d G2 S5
,
)

 
 

S5 

 

2 S5 G3 S8
,
 

3 0 0 0 0 I 2 G3 S9
,
 

R       
2 0 0 0 0 0 – 2 S10  G3 S11

,
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This Jacobian has 57 non-zero elements and requires 12 floating point 
operations to be calculated. All these results are summarized in Table 2.3. 

 
 

2.4 Concluding Remarks 

The fully Cartesian or natural coordinates described in this chapter have some 
interesting features that are convenient to summarize at this stage. Some of 
these features have been previously mentioned and others will be described for 
the first time: 

 

1. Natural coordinates are composed of purely Cartesian variables and 
therefore are easy to define and to represent geometrically. 

2. The rotation matrix of a rigid body whose motion is described with natural 
coordinates is a linear function of these coordinates (See Chapter 4). Note 
that with reference point coordinates the rotation matrix is a quadratic 
function of Euler parameters and a transcendental function (sine and cosine) 
of Euler or Bryant angles. 

3. Natural coordinates can be defined at the joints and then shared by 
contiguous bodies, contributing to define the position of both bodies and 

Table 2.2.  Jacobian matrix of an RSCR mechanism with natural coordinates. 
 

 r2 r3 u2 r4 
r12  ⋅ r12  = c1 x21 y21 z21 0   0   0 0   0   0 0   0   0 
r12  ⋅ u 1 = c2 u1x  u1y  u1z 0   0   0 0   0   0 0   0   0 
r23  ⋅ r23  = c3 x23 y23 z23 x32 y32 z32 0   0   0 0   0   0 
r32  ⋅ u 2 = c4 -u2x -u2y -u2z u2x  u2y  u2z x32 y32 z32 0   0   0 
u2 ⋅ u 2 = 1 0   0   0 0   0   0 u2x  u2y  u2z 0   0   0 

 0   0   0 0  -u2x  u2y 0 -z43 y43 0  -u2x  u2y 
r43  ∧ u 2 = 0 0   0   0 u2z  0 - u2x z43 0 -x43 -u2z  0  u2x 

 0   0   0 -u2y  u2x  0 -y43 x43 0 u2y  -u2x  0 
r45  ⋅ r45  = c5 0   0   0 0   0   0 0   0   0 x45 y45 z45 
r45  ⋅ u 2 = c6 0   0   0 0   0   0 x45 y45 z45 u2x u2y u2z 
r45  ⋅ u 3 = c7 0   0   0 0   0   0 0   0   0 u3x  u3y  u3z 

u3 ⋅ u2 = 1 0   0   0 0   0   0 u3x  u3y  u3z 0   0   0 
 
 

Table 2.3.  RSCR mechanism: comparative results 
 

RSCR Euler parameters Natural coordinates 
Size (20×21) (11×12) 

Non-zero elements 128 51 
No. of fl.-point ops. 988 12 



significantly simplifying the definition of joint constraint equations. At the 
same time, the total number of variables is kept moderate. 

4. With other kinds of coordinates, it is necessary to keep two sets of informa-
tion: the variables that define the position and orientation of the reference 
frame attached to the moving body with respect to the inertial or fixed 
frame, and the local variables that define the body geometry (position and 
orientation of axis, etc.) with respect to the moving frame. With natural 
coordinates, a single set of variables define the geometry and the position of 
the body directly in the global reference frame. It is only necessary to keep 
some constant values (distances, angles, etc.) that are independent of the 
reference frame. 

5. With natural coordinates the constraint equations that arise from the rigid 
body and joint conditions are quadratic (or linear); so their Jacobian matrix 
is a linear (or constant) function of the natural coordinates. 

6. Natural coordinates can be complemented easily with relative angles and 
distances defined at the joints to yield a mixed set of Cartesian and relative 
coordinates. Driving an angle or a distance, and defining forces and/or 
torques in joints become rather straightforward. Relative coordinates also 
simplify the task of defining the constraint equations for some particular 
joints, such as the helical and gear joints. 

7. In the constraint equations arising from natural coordinates, the design vari-
ables (lengths, angles, etc.) appear explicitly, not hidden by coordinate trans-
formations. Thus, parametric and variational design, kinematic synthesis, 
sensitivity analysis, and optimization may benefit from the use of these coor-
dinates. 
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Problems 

2/1 Write the constraint equations of the mechanism shown in the figure when mod-
eled with: a) Relative coordinates, b) Reference point coordinates, c) Natural co-
ordinates, d) Mixed coordinates, with relative coordinates in all the joints. 
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Figure P2/1. Figure P2/2. 

 
 
2/2 Assuming that there is rolling with no slipping between the disk and the rod, se-

lect an appropriate set of mixed coordinates (natural and relative) and write the 
constraint conditions. 

 
2/3 The wheel on the figure rolls without slipping. Use mixed coordinates (natural 

and relative) and find the constraint equations. It is suggested that the contact 
between the wheel and ground be modeled by means of a rack and pinion type of 
kinematic joint (a particular case of the gear joint). 
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Figure P2/3. Figure P2/4. 
 
 
2/4 Write the constraint equations of the mechanism shown, knowing that the wheel 

rolls on the ground with no slipping and slides on the rod DP. 
 
2/5 Given the mechanism shown in the figure, find the constraint equations that re-

late the input distance d with the output angle q and distance s. 
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Figure P2/5. Figure P2/6. 
 
 
2/6 The centers of the two gears shown in the figure are connected by means of a rod 

with point A being fixed. Considering mixed coordinates, find the constraint 
equations that relate the angular positions (relative or absolute) of the three ele-
ments. 

 
2/7 Consider the mechanism in the figure and find the constraint equations that re-

late the angles ϕ1 and ϕ2 with the parameter s that measures the relative position 
between elements 3 and 4.  
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Figure P2/7. Figure P2/8. 
 
 
2/8 Consider the mechanism shown to be modeled with natural coordinates. Rods 2 

and 4 are attached to the gears with radius r3 and r5 whose centers are connected 
by means of rod 3. Write the constraint equations that relate the position of the 
complete system in terms of the input angle ϕ1.  
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Figure P2/9. Figure P2/10. 
 
 

2/9 Two perpendicular slots have been cut in a plate that is placed so that the slots 
fit two fixed points A and B. Determine the constraint equations that allows one 
to obtain the position and orientation of the plate as a function of the input angle 
ϕ. 

 

2/10 Determine in the mechanism shown the constraint equations that relate the dis-
tance s with the angle ϕ. 

 
 
 
 

ϕ1ϕ2

 

 

0

2
L2 4

3
L3

L4

C

A

B

ϕ2

ϕ3

1
2

 
 

Figure P2/11. Figure P2/12. 
 
 

2/11 Consider the Geneva wheel of the figure and using natural coordinates, find the 
equations that relate the input angle ϕ1 with the output angle ϕ2.  

 
2/12 Element 2 of the mechanism in the figure is represented by the relative coordi-

nate ϕ2, element 3 by the reference point coordinates (x1,y1,ψ3), and element 4 by 
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the natural coordinates (x2,y2) and the fixed point A. Determine the five con-
straint equations that relate these six coordinates. 
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Figure P2/13. Figure P2/14. 
 
 
2/13 A plane may be defined by a point i and a unit perpendicular vector u as seen in 

the figure. Determine the constraint equations corresponding to the motion of a 
point j that moves parallel to the plane. 

 
2/14 A straight line can be defined by a point i and a unit vector u as seen in the fig-

ure. Determine the constraint equations for a point j that moves at a constant 
distance d from the line. Discuss the case when d=0. How can you enforce that j 
moves on along the straight line? 

 
2/15 Determine the constraint equations for a solid defined by two points and a unit 

vector that moves parallel to a plane, defined by a point i and a unit vector u, as 
seen in the figure. 

 
 
 
 
 

u

i

j k v

 

C

A
B

1 2

s

ϕ

 
 

Figure P2/15. Figure P2/16. 
 
 
2/16 The figure shows the frame A12B that can rotate about the fixed axis AB by the 

action of the string attached to point 2 that goes through a pulley located at C. 
Find the constraint equations that relate the angle ϕ with the length s of the cable 
between points 2 and C. 
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2/17 The ends of a slender rod of length 2  move on the sides of a cube with sides of 
unit length. Find the constraint equations that relate the distances s1 and s2. 
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Figure P2/17. Figure P2/18. 
 
 
2/18 Use natural coordinates to model the given mechanism and find the constraint 

equations of the RSSR mechanism shown in the figure.  
 
2/19 The mechanism shown has a composite kinematic joint R-C (Revolute-

Cylindrical). Find the constraint equations that relate the angle ϕ with the dis-
tance s. 
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Figure P2/19. Figure P2/20. 

 
 
2/20 Find the constraint equations of the gyroscope shown, considering the angles of 

relative motion. 
 
2/21 A six degree of freedom spatial manipulator is depicted in the Figure 2.27. 

Using natural coordinates and knowing that the axes defined by unit vector u1 
are parallel, find the corresponding constraint equations. 

 


