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7
Numerical Integration of the Equations
of Motion

It was shown in Chapter 5 how the application of the laws of dynamics to con-
strained multibody systems leads to a set of differential algebraic equations
(DAE). These can be transformed to second order ordinary differential equations
(ODE) by proper differentiation of the kinematic constraint equations, by use of
an independent set of coordinates, or by penalty formulations. A stable and accu-
rate integration of both DAE and ODE is of great importance for the solution of
the equations of motion. Although analytical solutions may be found for some
simple cases, the number and complexity of the equations resulting from the ma-
jority of multibody systems requires numerical solutions. Because the theory of
ordinary differential equations has been known for a long time, the stability,
convergence, and accuracy of many methods have been studied in great detail.
This has led to a wide use of these methods as compared to the differential alge-
braic equations, not so thoroughly known at this stage. As a consequence, many
of the computer programs currently available for the computer-aided analysis and
design of multibody systems rely on well-established methods for the solution of
ODE.

In this chapter, we first present a brief introduction to the concepts involved
in the solution of ODE with particular emphasis on the notion of stability,
which is of fundamental importance for the integration of constrained multibody
systems. This is followed by a description of the most widely-used methods
from the viewpoint of their application to the numerical integration of the equa-
tions of motion of multibody systems. Finally, we also describe some of the
methods used for the direct integration of DAE and draw some conclusions for
real time analysis.

7.1  Integration of Ordinary Differential Equations

As shown in Chapter 5, the mixed differential algebraic equations of motion can
be written after differentiation of the kinematic constraint equations as a set of n
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second order ordinary differential equations. They can be expressed in a general
way as

q = F(t, q, q) (7.1)

The solution q to this equation must satisfy also the initial conditions
q(t0)=q0  and q(t0 )=q0 . The majority of general purpose computer programs for
the solution of ODE integrate first order equations. For this purpose, the second
order system of equation (7.1) may be written as a system of 2n first order equa-
tions by defining the additional set of variables s = q. Consequently (7.1) be-
comes:

s  = F(t, q, s) (7.2)

q = s (7.3)

Introducing yT  º  {qT, sT} as a new vector variable that includes q and s, one
can write equation (7.2) in the form commonly used in textbooks dealing with
ODE:

y  = f(t, y) (7.4)

Function evaluation is the name of the process by which, given t and y, the
value of y  or f is computed. This obviously entitles the calculation of the accel-
erations as a function of the positions and velocities. Equation (5.67) may be
used to perform the function evaluation with independent coordinates; equation
(5.10) with Lagrange multipliers; and equation (5.37) for the penalty method.

7.1.1  General Background

Since in a general setting it is not possible to find closed form (analytic) solu-
tions to the set of equations (7.4) describing the motion of a multibody system,
we seek numerical methods (time-marching schemes) to approximate the solu-
tion at discrete times t1, t2, .... tn. We will define the time step Dt as the differ-
ence (tn+1Ðtn), and we will consider it constant during the integration process un-
less it is otherwise specified. If the function f is continuously differentiable with
respect to t and y over the interval of interest, then there is a unique solution to
(7.3) which also satisfies the initial conditions y0 = y(t0). A proof of this theo-
rem can be found in Ince (1956).

Taylor's Series Method. A first approach to the discrete approximate solu-
tion of (7.4), assuming that f is sufficiently differentiable with respect to t and
y, is to expand y in Taylor series as

y(t) = y0 +  Dt yI(t0) + Dt
2

2!
 yII(t0) +  . . . . . . . (7.5)

where the total time derivatives of y (denoted by (I)) can be found by differentiat-
ing f as:
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yI = f(t, y) (7.6)

yII = fI = ft + fy f (7.7)

Therefore the Taylor's expansion (7.4) can be written in terms of the function
f and its derivatives. The difficulties involved in obtaining high order derivatives
of f make this method unsuitable except for low order approximations resulting
from the truncation of the higher order terms of equation (7.5). One such approx-
imation is the well-known Euler's method which, given the solution at time
step n, approximates the solution at step n+1 as follows:

yn+1 = yn + Dt f(tn, yn) (7.8)

which is an explicit method, because the RHS does not depend on yn+1.
One can infer from Taylor's series expansion of (7.5) that the local truncation

error resulting from Euler's method is (Dt2f'(x)/2). It has been demonstrated
(Gear (1971)), that Euler's method converges to the true solution as Dt decreases
and that it is first order accurate. Although the local truncation error is propor-
tional to the square of Dt , or O(Dt2), the global error consisting of error accu-
mulated as the integration proceeds in time depends linearly on Dt, or O(Dt). It
is also demonstrated in Gear (1971) how an rth order method in which its global
error is O(Dtr) has a local truncation error equal to O(Dtr+1).

Accuracy is a very important aspect that needs to be considered when choos-
ing a method to integrate the equations of motion. Euler«s method is extremely
simple and easy to implement in a computer program, but it yields low accuracy
and requires rather small time steps. In some cases, the time step Dt may need to
be so small that the round-off errors become important and render the method
useless. The search for higher order methods that will produce more accurate re-
sults as the time step is decreased would lead us to include more terms in
Taylor's series (7.5) and approximate the solution at each time step with a more
accurate polynomial interpolation. This is not a simple task since the high order
derivatives of f are not readily available. One could use numerical or even sym-
bolic differentiation; but the equations of motion of multibody systems are so
involved that these tasks would not be of practical implementation in a general
purpose computer program.

Stability. In addition to accuracy, another important aspect to be considered for
the integration of ODE is stability. One can loosely define stability as the prop-
erty of an integration method to keep the errors resulting in the integration pro-
cess of a given equation bounded at subsequent time steps. An unstable method
will make the integration errors increase exponentially, and an arithmetic over-
flow can be expected even after just a few time steps. Since stability depends not
only on the given method but also on the type of problem, the test equation
y'=ly, where l is a complex valued constant, is customarily used to characterize
the stability properties of a given method. This characterization is performed by
defining the set of values of l and Dt for which the corresponding method is sta-
ble.
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Mathematical literature has defined a large number of different kinds of stabil-
ity. We only address three kinds of stability which are of use for the analysis of
multibody systems and which will be referred to repeatedly later in the text.

1. Algorithms that are stable for some restricted range of values (lDt) are called
conditionally stable. When using these methods, the time step should be
chosen depending on the characteristics of the problem as defined by l (or a
set of l). In the case of a nonlinear problem for which the value of l changes
with time, the algorithm may be stable for some part of the integration and
unstable for another. Consequently, it is very important when using
conditionally stable algorithms to know in advance the range of values (lDt)
for which the method is stable and to compare it with the possible range of l
values of the given problem. For this purpose the region of absolute stability
of a method is defined as that set of values (lDt) (area of the complex plane
C) for which a perturbation in the solution yn will produce a change in
subsequent values which does not increase from step to step. The region of
absolute stability is an intrinsic characteristic of the method which should be
considered prior to the use of conditionally stable algorithms. As an example,
Euler's method described above is conditionally stable and Dt must be less
than |l|/2 to assure stability.

2. Algorithms whose regions of absolute stability are Re(lDt)<Ðh and where h
is a positive constant, are call stiffly stable methods. These methods are im-
portant when dealing with stiff systems of ordinary differential equations. The
stiff problems contain a very large dispersion (several orders of magnitude) on
the values of l and arise either as a consequence of the type of formulation
such as the penalty formulations, or simply because of the physical character-
istics of the multibody system. The integration of these systems by condi-
tionally stable algorithms should be avoided, because it would require such
small time steps that the integration would become exceedingly expensive and
even inaccurate due to round-off errors. Stiffly stable algorithms do not in-
clude the imaginary axis of the complex plane as part of their region of abso-
lute stability. Multibody systems may have pure vibration modes whose l
may lie in the imaginary axis. For these cases the stiff stable methods are in-
adequate and a more stable family of algorithms, such as A-stable methods,
should be required for the integration.

3. An algorithm is said to be A-stable if the solution to y'=ly tends to zero as
n®¥ when the Re(l)<0, which means that the numerical solution decays to
zero whenever the corresponding exact solution decays to zero. An A-stable
algorithm may be also defined as an algorithm whose region of absolute sta-
bility is the complete left half complex plane including the imaginary axis.
The most important consequence of the A-stability property is that there is no
limitation on the size of Dt for the stability of the integration process: A-sta-
ble algorithms have also been called unconditionally stable in the linear set-
ting. It is apparent that this property is very important and generally desired
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in the integration of multibody and other engineering systems, since the ana-
lyst would only have to be concerned with the step size for accuracy purposes
and not for stability. The use of A-stable algorithms may become strictly
necessary for stiff problems, where the imaginary axis must be part of the re-
gion of absolute stability. An important subclass of the A-stable methods is
the L-stable ones. A method is said to be L-stable (also called stiff A-stable),
if it is A-stable and when applied to the solution of y'=ly with Re(l)<0, it
gives yn+1=A(l D t)yn where A(l D t) tends to zero as Re(l )® ¥ . The
difference between L-stability and A-stability is that the former damps out the
response of the stiff components (that is equations with high l) very rapidly,
almost in only one time step. This property is interesting and very applicable
in those cases with spurious stiff equations that may arise as a consequence of
the formulation or modeling process. However, caution should be practiced
when using these methods since they tend to artificially damp out part of the
response of interest corresponding to values of l that are not that high.

7.1.2  Runge-Kutta Methods

Euler's method is not useful because of its low accuracy. Higher order Taylor's
series are also impractical because of the difficulty involved in obtaining the
derivatives of f(t, y). It is possible, however, to develop one step methods that
match the accuracy of the higher order Taylor's series methods by sequentially
computing the function f(t, y) at several points within the time interval. The
task of computing higher order derivatives is replaced by function evaluations at
a given number of points. Such methods are called the Runge-Kutta methods.
One can refer to classical books in numerical analysis (Carnahan et al. (1969),
Conte and Boor (1972)) for a detailed description and derivation of these methods.

One of these algorithms which is commonly used in engineering applications
is the second order explicit Runge-Kutta method defined by:

yn+1  = yn + Dt
2

 (k1 + k2) (7.9)

k1 = f(t n, yn) (7.10)

k2 = f(t n + Dt, yn + Dt k1) (7.11)

which is also called the improved Euler's method, modified trapezoidal
method, or Heun's method. Note that two function evaluations are required per
time step, which in the case of multibody systems implies the solution of the
equations of motion to obtain the accelerations twice at the given time step. The
method is also explicit because k1 does not depend on k2, and neither one
depends on yn+1.

One of the most widely used Runge-Kutta methods is the fourth order method
which requires four function evaluations per time step:
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yn+1 = yn + Dt
6

 k1  + k2  + k3  + k4 (7.12)

k1 = f(tn, yn) (7.13)

k2 = f(tn + Dt
2

, y n  +  Dt
2

 k1) (7.14)

k3 = f(tn + Dt
2

, y n  +  Dt
2

 k2) (7.15)

k4 = f(tn + Dt, yn +  Dt k3) (7.16)

This method is explicit, because all the ki depend on previous values already
calculated. Otherwise, the method is said to be implicit. Solving for yn+1 at each
time step requires an iterative process for the solution of a set of nonlinear equa-
tions. A general r-stage implicit Runge-Kutta method requires r function evalua-
tions and has the following general form:

ki = f(tn + ci D t, yn +  Dt aij kjå
j=1

r

) (7.17)

yn+1 = yn +  D t bi kiå
i=1

r

 (7.18)

If aij=0 for j³i, then the values ki can be computed explicitly from the pre-
ceding values k1, k2,....kiÐ1, and the method is explicit. If aij=0 for j>i and
some aii¹0, the method is called semi-explicit. If all aii¹0 the method is di-
agonally implicit. Butcher (1964) has shown that it is possible to achieve order
2r for an implicit r-stage method. The two-stage method with a11=a12=0,
a21=a22=1/2, c1=0, c2=1, and b1=b2=1/2 corresponds to the trapezoidal rule
which according to Dalhquist (1963) is the most accurate second order A-stable
method. This method can also be expressed in finite difference form as

yn+1 = yn +  Dt
2

 f(tn, yn) + f(tn+1, yn+1)  (7.19)

Norsett (1974) proposed a diagonally implicit two-stage Runge-Kutta family
of methods for which a11=a22=a, a21=1Ð2a, a12=0; b1=b2=1/2 and c1=a,
and c2=1Ða. For general values of a, the method is second order accurate. For
a=1±Ö̀ 2/2 the method is L-stable. For a=(3+Ö̀ 6)/2 the method is third order
and A-stable and corresponds to the approximation used by Calahan (1968).
Good results of the Norsett algorithms have been reported by Smith (1975) who
used them for the solution of first as well as second order ODEs.

The explicit Runge-Kutta methods are easy to implement, because they only
require function evaluations, and are self-starting, meaning that they do not need
any other algorithm or technique to start the integration process. However, they
are only conditionally stable. Figure 7.1 shows the area of absolute stability of
the fourth order explicit Runge-Kutta method of equation (7.12). In addition,
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Figure 7.1.  Areas of absolute stability of some fourth order methods.

they require several function evaluations per time step. This turns to be compu-
tationally expensive when considering large systems of nonlinear equations, such
as those arising in the analysis of multibody systems.

Implicit Runge-Kutta methods are more stable (the r-stage methods of order
2r are A-stable), and much more accurate than the explicit ones. However, except
for the simplest trapezoidal rule, they are more difficult to implement and much
more expensive to use. A set of nonlinear equations that involve repeated func-
tion evaluations needs to be solved at each time step. A disadvantage of both the
implicit and explicit methods is that it is very difficult to evaluate bounds for the
accumulated or propagated error. This makes error control and time-step adjust-
ments rather involved with this kind of method. An algorithm that uses error
control and time step adjustment for the Runge-Kutta method of order four is due
to Felhberg (1970). The implementation is explained in detail by Burden et al.
(1989).

7.1.3  Explicit and Implicit Multistep Methods

The TaylorÕs series and the Runge-Kutta Methods are called single step methods
because they only require information on the time step (n, n+1) to advance to the
next step. When information of other previous steps is also used, the resulting
method is called multistep. These methods are very simply derived by integrating
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Table 7.1.  Coefficients of the Adams-Bashforth Methods.

k a 0 a 1 b0 b1 b2 b3 b4 b5

1 1 1 0 1

2 2 2 0 Ð3 1

3 12 12 0 Ð23 16 Ð5

4 24 24 0 Ð55 59 Ð37 9

5 720 720 0 Ð1901 2774 Ð2616 1274 Ð251

the differential equation yÕ=f(t, y) from tnÐp to tn+1, where p is a positive inte-
ger.

y n+1 = y nÐ p + f(t, y) dt
tnÐp

tn+1

(7.20)

In order to carry out the integration, one can approximate the function f(t, y)
for instance by using backward finite differences, with the values f(t, y) calcu-
lated at previous time steps. One is referred to Carnahan et al. (1969) and Conte
and Boor (1972) for a detailed description of this process. The end result is a fam-
ily of methods that depends on the order of approximation of f(t, y) and on the
value of p. If the approximation for f(t, y) includes the value at n+1, the method
is called implicit, and explicit otherwise. Implicit methods are much more accu-
rate and stable than the explicit ones. However, they are also more difficult to
use, since yn+1 can not be solved for explicitly and an iteration process is re-
quired.

The general form of the multistep methods is given by the following expres-
sion:

a i yn+1Ðiå
i=0

p+1

 + Dtå
i=0

k
 bi f(t n+1Ði, yn+1Ði) = 0 (7.21)

The ai and bi are parameters that define the method. If b0=0 the term f(tn+1, yn-1)
does not appear in the difference equation and the method is explicit. If b0¹0 the
method is implicit. The methods resulting from bi=0 for all i³1 are called back-
ward-difference methods.

One can readily see that the trapezoidal rule defined by (7.19) corresponds to
a0=Ða1=1 and b0=b1=Ð1/2. In addition, the more terms involved in (7.21) the
better the approximation and the accuracy of the method will be. However, in-
creasing the number of terms also leads to a larger amount of information from
previous steps that needs to be stored. This can be a serious disadvantage in the
analysis of multibody systems with a large number of equations, since it may
lead to swapping of information from the in-core to out-of-core computer stor-
age.

Three important conclusions known as Dahlquist's theorem (1963) may be
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Table 7.2.  Coefficients of the Adams-Moulton Methods.

k a 0 a 1 b0 b1 b2 b3 b4

1 1 1 Ð1

2 2 2 Ð1 Ð1

3 12 12 Ð5 Ð8 1

4 24 24 Ð9 Ð19 5 Ð1

5 720 720 Ð251 Ð646 264 Ð106 19

mentioned at this stage, which can be summarized as follows:

1. There is not an A-stable explicit linear multistep method.
2. The order of accuracy of a linear multistep A-stable method cannot exceed

two.
3. The second order accurate A-stable linear multistep method with the smallest

error constant is the trapezoidal rule.

The widely known Adams-Bashforth methods are explicit with p=0. Table
7.1 shows the parameters corresponding to different orders of accuracy. The most
commonly used Adams-Bashforth method is the fourth order method that takes
the following form:

yn+1 = yn + Dt
24

 (55 fn Ð  59 fnÐ 1 + 37 fnÐ 2 Ð  9  fnÐ 3) (7.22)

with local truncation error E = 251/720  Dt  5 fIV x  . Being explicit, these
methods are conditionally stable, and the area of absolute stability for the fourth
order method is illustrated in Figure 7.1.

The family of implicit methods obtained for p=0 are called the Adams-
Moulton methods. Table 7.2 depicts the coefficients of several of the methods.
The widely used fourth order method is

yn+1 = y n  +  Dt
24

 (9 fn+1 + 19 fn Ð 5 fnÐ1 + fnÐ2) (7.23)

with the local truncation error E = Ð 19/720  Dt
5 f

IV(x).
The use of (7.23) requires an iteration process that is usually initiated using

(7.22) to obtain an estimate or prediction of the value of fn+1. It is worth paying
this price, since the Adams-Moulton method is much more accurate than the
Adams-Bashforth as seen by the respective constants of the error terms. Note
also that the (7.22) is a fourth order method with only one function evaluation
per time step as compared to the four evaluations required by the explicit fourth
order Runge-Kutta Method. As a consequence of Dahlquist's theorem (1975), the
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Adams-Moulton method is also conditionally stable. The area of absolute stabil-
ity for the fourth order method is also illustrated in Figure 7.1.

Predictor-Corrector Iteration. The use of an implicit multistep method
leads to much more accurate results than the explicit ones. Since f(tn+1, yn+1) is
nonlinear for the case of multibody systems, a set of nonlinear equations is re-
quired for the solution of yn+1. The necessary iteration process can be initiated
by using an explicit method of the same order to obtain a predictor. For the case
of the Adams-Moulton method of (7.23) a good predictor is the Adams-Bashforth
method of equation (7.22). One can obtain a predicted value yn+1

0  with which
fn+1 of (7.23) can be computed and from these a new approximation yn+1

1 . This
value can be reentered again in (7.23) to obtain a new estimate yn+1

2 , and so on
until the difference of two consecutive values is smaller than a prescribed toler-
ance. This process can be summarized in the following algorithm:

Algorithm 7-1

1. Use the explicit method (predictor) to obtain yn+1
0

2. Use the implicit method (corrector) for the successive yn+1
k , k = 1,  2, ...

3. Check 

 
yn+1

k  Ð  yn+1
kÐ1

yn+1
k

 <  tolerance

4. If 3 is true, go to the next step. Otherwise go to step 2.

The predictor-corrector algorithm outlined above is equivalent to performing a
fixed point iteration for the solution of the nonlinear equations on yn+1. This it-
eration is rather slow, since the rate of convergence is only linear in the neigh-
borhood of the solution. It can also be shown (Carnahan et al. (1969)) that the
time step required for this iteration to converge has to satisfy the following con-
dition:

Dt < C
¶f/¶y

(7.24)

where C is a constant that depends on the type of explicit method being used.
One may see how Dt is limited not only by the stability criteria but also by the
convergence of the iteration process that is required at each time step.

It is also possible to use a Newton-Raphson or quasi Newton-Raphson itera-
tion by providing a derivative of the function f(t, y) with respect to y. In this
way the convergence rate increases from linear to quadratic. Some integrators
have the option of computing fy by finite difference approximations or allowing
the user to provide it. In this last case the calculation of fy is entirely equivalent
to linearize the equations of motion as explained in Chapter 9.

Error Estimates. A very positive advantage of the use of predictor-corrector
algorithms is the possibility of finding an estimate of the error at each time step.
This can be accomplished using the local truncation errors of both predictor-cor-
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rector methods. For example, if y(tn+1) represents the exact value of y at time
tn+1 the errors produced by the predictor and corrector of (7.22) and (7.23) will re-
spectively be:

y(tn+1) Ð yn+1
0  = 251

720
 Dt

5
 f

IV
(x1) (7.25)

y(tn+1) Ð yn+1
1  = Ð  19

720
 Dt

5
 f

IV
(x2) (7.26)

For a sufficiently small time step one can assume that fIV remains constant
and by subtracting (7.25) and (7.26), one can get the following estimate of the
error after one iteration:

y(tn+1) Ð yn+1
1  @  1

14
 (yn+1

1  Ð  yn+1
0 ) (7.27)

This error estimate allows for the possibility of general purpose integrators
with time step adjustments. If the error is larger than a pre-specified tolerance, it
may be more convenient to reduce the time step rather than continue the fixed
point iteration. However, if the error is small, the time step can be enlarged to
achieve a faster integration. The most expensive part of the integration process is
the function evaluation f(t, y) which requires the solution of the dynamic equa-
tions. These function evaluations can be composed in the case of multibody sys-
tems of a large number of coupled nonlinear equations.

7.1.4  Comparison Between the Runge-Kutta and the Multistep
Methods

The Runge-Kutta and multistep methods can be used for the solution of the equa-
tions of motion of multibody systems. The Runge-Kutta methods are single-step
and therefore self-starting. In addition they need a minimum amount of storage
requirements. However, they require a larger number of function evaluations
(four for the fourth order method). Due to the difficulty of estimating their local
truncation errors, the time step adjustment can only be performed by integrating
with two different time steps. This is computationally expensive.

The multistep methods require a smaller amount of function evaluations, par-
ticularly if the time step is chosen so that the number of predictor-corrector itera-
tions per step is kept below two or three. Error estimates are easily provided, and
step-size adjustments can be performed with no difficulties. Being a multi-step
method, they are not self-starting, requiring the help of a single-step method to
start the integration. In the case of multibody system, the forcing terms may
have jumps or discontinuities. While this does not affect a single-step method, a
multistep method will need to be reinitialized. The necessary historical data pool
is larger for these methods thus requiring a larger amount of storage.

Regardless of these difficulties and since the total cost of integration is
mostly due to the number of function evaluations, the general purpose integra-
tors that are based on predictor-corrector Adams-Moulton-Bashforth methods
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Table 7.3.  Parameter values of the GearÕs Stiffly Stable Methods.

p b0 a 0 a 1 a 2 a 3 a 4

1 Ð1 1 Ð1

2 Ð2 3 Ð4 1

3 Ð6 11 Ð18 9 Ð2

4 Ð12 25 Ð48 36 Ð16 3

(Gear (1971), and Shampine and Gordon (1975)) have been customarily used for
the integration of the equations of motion of multibody systems. Both explicit
Runge-Kutta methods and multistep methods suffer from being only condition-
ally stable. This poses serious limitations in the size of the time steps in those
systems with a large dispersion on the values of l, the so-called stiff systems,
and also in those cases in which the forcing terms contain high frequency com-
ponents.

Stiff Systems of Equations. A stiff system of differential equations is
characterized by a large dispersion of the values l of each of the individual equa-
tions. The stiffness can be produced by the physical characteristics of the multi-
body system (components with large differences in their masses, stiffness and/or
damping). However in many other instances, stiffness is numerically induced due
to either the discretization process, the large number of components and equa-
tions of motion, or sudden or accumulated violations in the constraint condi-
tions. Gear (1971) developed a family of variable order stiffly-stable algorithms
for the solution of stiff problems. Table 7.3 illustrates the parameter values of
such methods. Each method is a backward-difference multistep algorithm. The
second order method is A-stable (it actually is L-stable) but much less accurate
than the trapezoidal rule which is the most accurate second order A-stable
method. For orders larger than two, the regions of stability do not include the
complete imaginary axis. This feature does not appear appropriate for typical
multibody systems with oscillatory motion. In second order systems, the back-
ward difference methods may introduce an excess of artificial damping in the in-
teresting part of the response. They tend to yield better results in first order prob-
lems with exponentially decaying responses; such as those in heat conduction,
mass transport, and ground water flow (Wood (1990)).

In the case of constrained multibody systems with stiff equations, the analyst
may benefit by the choice of an A-stable method (unconditionally stable) and not
have to worry about the stiff effects produced by either the physical characteris-
tics of the multibody system, the forcing terms, or the large number of equations
of motion. Unconditionally stable methods are widely used in the field of struc-
tural dynamics because of the high frequencies produced by the finite element
discretization, even to such an extent that A-stability is considered as a necessary
condition for any new method to gain acceptance within the structural engineer-
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ing community. The next section reviews a few of the mostly used A-stable
methods in structural dynamics. Some of them have also been successfully used
in the integration of the equations of motion of multibody systems (See Bayo et
al. (1991), and Chapter 8).

7.1.5  Newmark Method and Related Algorithms

Newmark (1959) proposed what has become one of the most popular family of
algorithms for the solution of problems in structural dynamics. His method re-
lies on the following interpolations that relate positions, velocities, and accelera-
tions from step n to n+1:

vn+1 = vn + Dt (1Ðg) an + g  an+1  (7.28)

xn+1 = xn + Dt vn+ Dt
 2

2
 (1Ð2b) an + 2b an+1  (7.29)

where xn, vn, and an are approximations to the position, velocity, and accelera-
tion vectors at time step n; and b and g are the parameters that define the
method. The method is implicit, and A-stability is guaranteed for 2b³g³1/2
(Bathe (1982)). The trapezoidal rule is a particular case of this family for which
b=1/4 and g=1/2. This case also corresponds to the assumption that the
acceleration is constant over the time interval [tn, tn+1] and equal to (an+an+1)/2.
This method is also known as the average acceleration method. For any other
set of b and g values within the range of A-stability, the degree of accuracy of
the method degrades to order one. The linear acceleration method, in which a
linear variation of the acceleration in the time interval [tn,tn+1] is assumed,
corresponds to the case b=1/6 and g=1/2. This method is conditionally stable
and has little practical importance; however, it was used as the basis for another
important method known as the Wilson-q method (Bathe (1982)).

Similar to the multistep methods, the implicit algorithm of equations (7.28)
and (7.29) can be used in a predictor-corrector fashion with fixed point iteration.
This is not the way it is customarily applied in structural dynamics. Rather, the
interpolations of (7.28) and (7.29) are directly introduced into the equations of
motion. This leads to a set of algebraic equations which can be linear or nonlin-
ear depending on the type of problem, with an+1 as the resulting unknowns. The
algebraic equations can alternatively be solved with xn+1 as primary unknowns,
by substituting an+1 and vn+1 in terms of xn, vn, an and xn+1. Equations (7.28)
and (7.29) can then be written as:

an+1 = 1

b Dt
 2

 (xn+1 Ð  xn) Ð  1
b Dt

 vn Ð  (1 Ð  1
2b

) an (7.30)

vn+1 = g
b Dt

 (xn+1 Ð  xn) Ð  (g
b

 Ð 1) vn Ð  ( g
2 b

 Ð 1) Dt an (7.31)
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The procedure can be explained by applying these equations to a linear struc-
tural dynamics problem which has the following form (Bathe (1982) or Hughes
(1987)):

M an+1 + C vn+1 + K xn+1 = F(t) (7.32)

with M, K, and C as the mass, stiffness, and damping matrices, respectively;
and F as the vector of externally applied forces. The substitution of equations
(7.30) and (7.31) into (7.32) yields

1

b Dt
 2

 M  + g
b Dt

 C + K  xn+1 =

= F(t) +  M 1

b Dt
 2

 x n  +  1
g  Dt

 v n  +  (1 Ð  1
2 b

) an   +

+  C g
b Dt

 x n  +  (g
b

 Ð 1) vn +  ( g
2 b

 Ð 1) Dt an   

(7.33)

Once the constant matrix that multiplies xn+1 on the left-hand side has been
triangularized, the solution for the displacements at each time step only requires
the formation of the right-hand side of (7.33) plus a forward reduction and a
backwards substitution. This implementation is by far more efficient than the it-
erative process required with a fixed point iteration which would require a func-
tion evaluation per iteration with several iterations per time step. This substitu-
tion has also been carried out for nonlinear problems in structural dynamics. The
resulting set of nonlinear algebraic equations in xn+1 is customarily solved by ei-
ther Newton-Raphson iteration which has a quadratic convergence in the neigh-
borhood of the solution, secant methods, or quasi-Newton methods (Bathe
(1982)).

The same idea can be applied in principle to the equations of motion of
multibody systems which take the following general form:

M(q) q + P(q, q) = F(t) (7.34)

However, the substitution of (7.30) and (7.31) in (7.34) usually yields a
highly nonlinear set of equations in the unknowns qn+1. The tangent or quasi-
tangent matrices necessary for the solution of the resulting set of equations
through Newton-Raphson iteration may be of such complexity, that one may
end up being forced to use the simpler but less efficient predictor-corrector algo-
rithms with the fixed point iteration outlined above. For those cases in which
the formation of the tangent or quasi-tangent matrix is possible, this way of in-
tegrating the equations of motion tends to be much more efficient than the pre-
dictor-corrector schemes which only have linear convergence in the neighborhood
of the solution. Such cases and special implementations will be dealt with in
Chapter 8.

The most accurate A-stable algorithm of the Newmark family is the trape-
zoidal rule (b=1/4 and g=1/2) which is energy preserving for linear systems. It
does not damp out any of the frequency content of the system during the integra-
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tion process (for a detailed analysis of the accuracy and stability of the Newmark
method refer to Bathe (1982) and Hughes (1987)). For g>1/2, the A-stability is
preserved and artificial damping is introduced. However, the accuracy is reduced
to first order. This artificial damping is in some instances necessary because the
mathematical model may contain spurious high frequency content that needs to
be damped out.

There is another reason why artificial damping may be necessary. The trape-
zoidal rule is unconditionally stable for linear problems. However, this property
is not maintained in the nonlinear regime. As examples of instabilities, Hughes
(1976) reported pathological energy growth in structural dynamic problems with
bilinear softening material. Cardona and Geradin (1989) and Bayo et al. (1991)
also reported instability of the trapezoidal rule in the integration of constrained
multibody systems. Gourlay (1970) considered the nonlinear scalar equation
y+l(y)y = 0. He reported that when ln>ln+1, the trapezoidal rule becomes condi-
tionally stable with critical time step Dt£4/(lnÐln+1) (See example below). One
way of circumventing this problem is to use the midpoint rule and related
algorithms (Simo and Wong (1991)) that preserve unconditional stability in the
nonlinear regime. The midpoint rule also uses the same interpolations defined by
the equations (7.28) and (7.29), with the difference that equilibrium is computed
at the middle of the time step rather than at the end. Accordingly equation (7.34)
becomes

M(qn+1/2) qn+1/2  +  P(qn+1/2 , qn+1/2) = F(tn+1/2) (7.35)

with tn+1/2 = tn+Dt/2, qn+1/2 = (qn+1+qn)/2, and the same for qn+1/2 and for
qn+1/2.

The instability of the trapezoidal rule in nonlinear problems can also be
avoided by: first, introducing the energy constraints (Hughes (1983)) or the
kinematic velocity constraints (Bayo et al. (1991) or Section 8.5); and secondly,
by adding some artificial damping through the numerical integration scheme. We
discuss in the next sections a couple of these methods.

Example 7.1

Demonstrate that the trapezoidal rule is conditionally stable in the nonlinear set-
ting for ln>ln+1 and that the critical time step becomes Dt£4/(lnÐln+1).

Consider the equation of motion y+l(y)y = 0. (i)
The trapezoidal rule is given by

y n+1 = yn + Dt
2

 y n + y n+1  (ii)

Substituting (i) into (ii) and grouping terms together one obtains

yn+1 (2 + ln+1 Dt) = yn (2 Ð ln Dt) (iii)

and the condition for stability becomes
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y n+1

y n
 = 

 2 Ð ln Dt

 2 + ln+1 Dt
 £ 1 (iv)

which leads to the critical time step Dt£4/(lnÐln+1).

aaaa -Method (Hilber, Hughes and Taylor). Since numerical damping can
not be introduced with the Newmark family unless the order of accuracy is de-
graded, Hilber, Hughes, and Taylor (1977) proposed the a-method which can
still maintain second order accuracy and A-stability and in addition introduce
variable damping depending on the value of the parameter a. This method uses
the same finite difference expressions of the Newmark method (7.28) and (7.29),
however the equations of motion of the type (7.34) are modified in the following
form:

M(qn+1) qn+1 +  (1+a) P(qn+1, qn+1) Ð  a P(qn, qn) = F(tn+a) (7.36)

where tn+a=(1+a)tn+1Ðatn. For a=0 this method reduces to the Newmark fam-
ily. The best choices for the parameter a lie in the interval [Ð1/3, 0]. One can
reduce this three parameter family of methods to only one parameter by choosing
g = (1Ð2a)/2 and b = (1Ða)2/4. This choice of parameters results in a second
order accurate, A-stable algorithm with variable artificial damping, depending on
the value of a. The smaller the value of a the larger the damping is. When
a=0, there is no damping. The resulting method is the trapezoidal rule. A
comparison of the accuracy of the Newmark method and the a-method as
measured by the period elongation and algorithmic damping ratios can be seen in
Hughes (1987) and Hilber (1976). Cardona and Geradin (1989) used the a-
method successfully in the integration of constrained multibody systems.

Wilson-qqqq  and Collocation Methods. In order to make the linear accelera-
tion method (Newmark's method with b=1/6 and g=1/2) unconditionally stable,
Wilson (1968) proposed the idea of applying the equations of motion not at time
t+Dt but at t+qDt, where q>1.37 for unconditional stability. This method, when
applied to the type of equations of multibody systems (7.22), yields the follow-
ing expressions:

M(qn+q) qn+q + P(qn+q, qn+q) = F(tn+q) (7.37)

qn+q = (1 Ð q) qn+q + q qn  (7.38)

Fn+q = (1 Ð q ) Fn+q + q Fn (7.39)

with the displacement and velocity expressions given by the Newmark interpola-
tion (7.18) with b=1/6, and g=1/2.

The collocation methods were proposed by Hilber (1976) as a three-parameter
family of methods resulting from the combination of the Newmark interpolation
with the Wilson-q method. The resulting equations are composed of equations
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Figure 7.2.  Double pendulum with rotational springs.

(7.37)-(7.39) plus the Newmark finite difference equations that now include the q
parameter (also called the collocation parameter), as follows:

qn+q = qn + q Dt (1Ðg) qn + g qn+q  (7.40)

qn+q = qn + q Dt qn + 
q Dt 

2

2
 (1 Ð 2 b) qn + 2 b qn+q  (7.41)

This family of methods now encompasses the Newmark method for which
q=1 and the Wilson-q for which b=1/6 and g=1/2. Second order accuracy and
unconditional stability are assured if the following conditions on g, b, and q are
met:

g = 1/2,    q ³ 1,    q
2(q+1)

 ³ b ³ 2 q2
 Ð 1

4 (2q 3
 Ð 1)

 (7.42)

Similar to the a-method, the collocation method also allows for controllable
algorithm damping. A good comparison on accuracy and damping characteristics
of both methods is included in Hughes (1987) and Hilber (1976). However, as
reported by Goudreau and Taylor (1973), the method suffers from a tendency to a
spurious overshoot of the response in the first few steps of integration. Such
disadvantage is not present in either the Newmark or the a-methods.

Example 7.2

Double pendulum with rotational springs. With this example, we show the stabil-
ity and convergence properties of the trapezoidal rule when its difference equations
are introduced in the equations of motion as explained in Section 7.1.4. The posi-
tions are the primary variables, and the resulting set of equations are solved by
means of Newton-Raphson iteration. Figure 7.2 illustrates a double pendulum that
has two elements of unit mass m = 1 and unit length with rotational springs at the
joints of value k. The joints are subjected to equal initial velocities of value 100
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rad/sec. The system is then analyzed using the two independent joint rotations j1
and j2 as coordinates for a total time of 20 seconds.

The kinetic energy of this system is

T = 1
2

 j1 j2
 

3 + 2 cosj2 1 + cosj2

1 + cosj2 1
 

j1

j2

   

and the potential energy,

V = 1
2

 k  (j1
2
 + j2

2)

The application of the Lagrange's equations leads to the following equations of
motion:

 
3 + 2 cosj2 1 + cosj2

1 + cosj2 1

j1

j2

 = Ð 
k  j1

k  j2

 + sinj2 
2 j2 j2

(j2 Ð j1) Ð j1

 
j1

j2

  

Since independent joint coordinates are being used, the mass matrix is not con-
stant, and there are velocity-dependent terms in the RHS of the equations of mo-
tion which make the integration more critical. Also, the terms coming from the
springs constants k in the RHS of the equation add additional numerical stiffness
to the above equations of motion. These are integrated for different values of the
spring constants k: first, in the predictor-corrector fashion (Algorithm 7-1) by us-
ing the subroutine DE (Shampine and Gordon (1975)); and secondly, by substitut-
ing the difference equations corresponding to the trapezoidal rule (equations (7.28)
and (7.29) with b=1/4 and g=1/2) and solving the resulting set of nonlinear alge-
braic equations by means of the Newton-Raphson iteration. Although it is rather
involved, the expression for the tangent matrix can be obtained for this particular
case in closed form and its elements are:

 t11 = 4

Dt
2
 (3 + 2 cosj2) + k   Ð 4

Dt
 j2 sinj2

t12 = 4

Dt
2
 (1 + cosj2) Ð 4

Dt
 (j1 + j2) sinj2 Ð (2 j1 j2 + j2

2
) cosj2 Ð (2 j1 + j2) sinj2 

t21 = 4

Dt
2
 (1 + cosj2) Ð 4

Dt
 (j1 + j2) sinj2 

t22 = 4

Dt
2
 + k   + j1

2
 cosj2 Ð j1 sinj2 

where the velocities and accelerations can be expressed in terms of the positions
using the difference equations (7.28 and 7.29). Even in this simple case, the ele-
ments of the tangent matrix are quite involved. One can conclude that for a general
case the formulation of the equations of motion in independent coordinates makes
the task of obtaining the tangent matrix exceedingly complicated. On the other
hand, the use of dependent coordinates and in particular the natural coordinates
leads to a much simpler tangent matrix at the expense of increasing the number of
equations and adding constraint conditions. This can be done as an exercise (See
problem at the end of the chapter). These concepts are further developed in Chapter
8 (Section 8.5) in the context of real time analysis.
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Table 7.4.  Maximum errors and total CPU time in the integration of the double pen-
dulum.

Error CPU time

k1 k2 h Trapez. DE Trapez. DE

0 0 0.001 4.6  10Ð4 Ð3.4  10Ð5 14.6 11.2

100 100 0.001 2.7  10Ð3 7.3  10Ð3 17.2 14.2

104 104 0.001 2.3  10Ð3 3.8  10Ð3 14.7 18.0

106 106 0.001 1.2  10Ð3 Ð2.0  10Ð3 12.1 48.4

108 108 0.001 7.7  10Ð5 Ð4.9  10Ð3 9.2 342.6

0 100 0.001 4.0  10Ð4 Ð1.7  10Ð5 14.2 10.9

0 104 0.001 6.0  10Ð5 6.0  10Ð5 14.0 12.1

0 106 0.001 1.0  10Ð3 3.5  10Ð2 11.7 47.3

0 108 0.001 3.7  10Ð3 No conv. 8.8 No conv.

Another very important point is that the spring terms k appear in the tangent
matrix and do not produce numerical instabilities. On the contrary, these terms
help in the convergence process with increasing values of k; thus coping very
nicely with the problem of numerical stiffness.

Table 7.4 contains a comparative study of both methods, by showing the re-
sulting maximum energy errors along with the processing times for a time step of
0.001 seconds and different values of the spring constant k. The constant is
changed with the idea of adding numerical stiffness to the problem. One can see
how the integration with the trapezoidal rule, although not as accurate, compares
favorably with the subroutine DE for small values of k (low numerical stiffness).
When stiffness is present due to large values of k, the implementation of the
trapezoidal rule with the positions as primary variables becomes much faster and
accurate than DE which behaves very slowly in some cases and does not converge
in others. With this implementation of the trapezoidal rule, the integration be-
comes faster as the system gets stiffer.

7.2  Integration of Differential-Algebraic Equations

7.2.1  Preliminaries

We present in this section a brief discussion on the direct integration of the dif-
ferential algebraic equations (DAEs) with special emphasis in its application to
the integration of the equations of motion of multibody systems. The intention
is to give a basic notion of where the state of the art in this field currently is and
of how these new methods are applied to the problems at hand. One is referred to
specialized works in this area (Brenan et al. (1989), and Haug and Deyo (1990))
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for a more comprehensive study on these topics.
Nonlinear DAEs are classified into two major groups: implicit and semi-ex-

plicit. Implicit equations take the following form:

F(t, y, y ') = 0 (7.43)

with initial conditions y(to) = yo, and where ¶F/¶y' may be singular. This type
of equation arises in problems related to electrical circuits. Semi-explicit equa-
tions can be written as:

y' = f(t, z, y) (7.44)

0 = g(t, z, y) (7.45)

with initial conditions y(to) = yo and z(to) = zo. This type of equation arises
commonly in constrained multibody systems, optimal control, and trajectory
prescribed path problems.

Whereas the theory of existence and uniqueness of ordinary differential equa-
tions (ODEs) is complete, that of the DAEs is still incomplete. It is also more
difficult to establish than that of the ODEs. Solutions to DAEs may not always
exist. If they do, they may not be unique. Other important issues that pertain to
the integration of DAE are their theoretical as well as numerical solvability; that
is, the identification of analytical as well as numerical solutions. Such topics are
very important when considering the development of both special and general
purpose DAE solvers. The amount of research dedicated to this important math-
ematical problem has been steadily increasing in recent years, as measured by the
amount of related literature appearing in specialized journals and conferences.
One may identify such published works in Brenan et al. (1989), and Haug and
Deyo (1990).

Differential algebraic equations are classified according to their differential in-
dex or simply index, defined as the number of times that the DAE has to be dif-
ferentiated to obtain a standard set of ODE. This ODE is also called the underly-
ing ODE, and is satisfied by all the components of the solution. The differential
index can also be defined as the number of differentiations necessary to solve for
y' uniquely in terms of y and t. The higher the index the more complex the inte-
gration becomes. As an example, one can verify that the equations of constrained
multibody systems of the form:

M(q) q = Q(t, q , q) Ð  FFFF q
T  (q) llll   (7.46)

FFFF(t, q) = 0 (7.47)

is semi-explicit of index three, with q as the positions, q the velocities, q the ac-
celerations, and Q as all the forcing terms. Equations (7.46) and (7.47) can be
transformed to first order form by the following transformation q = s, yielding:

M(q) s = Q(t, q , s)  Ð  FFFF q
T  (q) llll   (7.48)

q = s (7.49)
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FFFF(t, q) = 0 (7.50)

Two families of methods used for the integration of ODEs have also been uti-
lized for DAEs: the backward difference formulae (BDF), and the implicit Runge-
Kutta methods (IRK). This does not necessarily mean that all DAE problems are
solvable by ODE methods. In fact this does not hold true in all the cases. How-
ever, success has been reported when using these methods for certain classes of
DAE. Special care must be exercised at the time of using these algorithms since
their implementation is not as simple as in the case of ODEs.

The way of solving a differential algebraic equation in essence is to approxi-
mate y' in (7.43) or (7.44), and (7.45) by a finite difference formula or implicit
Runge-Kutta method, and solve the resulting set of nonlinear algebraic equations
by some iterative procedure for an approximation to y. For example, the simple
backward Euler method (yn+1=yn+Dt yn+1) can be substituted into the implicit
equation (7.28) to yield

F tn+1, yn+1, 1
Dt

 (yn+1 Ð yn)  = 0 (7.51)

The procedure can be applied in the same manner for the semi-explicit equa-
tions (7.44) and (7.45). Equation (7.51) constitutes a set of nonlinear equations
with yn+1 as unknowns that can be solved by standard methods such as Newton-
Raphson iteration. This way of proceeding is similar to that outlined above for
the solution of the equations in structural dynamics and used in the numerical ex-
ample of the double pendulum, in which the finite difference equations of the in-
tegrator (the Newmark family, collocation, or a-methods, etc.) that approximate
the derivatives (accelerations and velocities) are directly introduced in the equa-
tions of motion. More recently, the implicit Runge-Kutta methods have also
been used in a similar fashion, resulting in a set of nonlinear equations with
yn+1 as unknowns.

7.2.2  Solutions by Backward Difference Formulae

The BDF methods were first successfully applied to the solution of DAEs. The
theory of stability and convergence has been almost completed, and there is even
public domain software currently available (Petzold (1982)). The method consists
of directly applying the backward difference formulae to the system equations.
This approach is one of the options used in commercial programs for the integra-
tion of the equations of motion of constrained mechanical systems (Chace
(1984)). The procedure consists of substituting the backward difference approxi-
mations:

qn+1 = 1
Dt bo

 (qn+1 Ð a i qnÐiå
i=0

p

) (7.52)

sn+1  = 1
Dt bo

 (sn+1 Ð a i snÐ iå
i=0

p

) (7.53)
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into the equations of motion (7.48)-(7.50) to form the following set of nonlinear
algebraic equations with qn+1 and sn+1 as unknowns:

M(qn+1) 1
Dt bo

 (sn+1 Ð a i snÐiå
i=0

p

) = Qn+1 Ð FFFFq
T
(qn+1) lllln+1 (7.54)

1
Dt bo

 (qn+1 Ð a i qnÐiå
i=0

p

) = sn+1 (7.55)

FFFF(t, qn+1) = 0 (7.56)

The solution of this system of equations can be carried out by Newton-
Raphson iteration provided a tangent matrix is available. Otherwise, a less accu-
rate secant method or simplest fixed point iteration would have to be used. An
approach that consists of substituting the backward difference equations (7.52)
and (7.53) into the equations of motion written in the form of the generalized
coordinate partitioning method has been proposed by Haug and Yen (1990).

It has been demonstrated by Gear and Petzold (1984) that for all index one
DAEs, the k-step BDF with fixed step size are stable and convergent to order
O(Dtk), if all initial values are sufficiently accurate. An extension of this result
to variable step size is shown by Gear et al. (1985). General purpose DAE
solvers designed to solve this kind of problems are not free of some implementa-
tion problems that are described below. For higher index systems, instability
may be present. Encouraging results have been obtained for the particular case of
semi-explicit systems which are those in which the multibody systems are clas-
sified. It has been demonstrated (Lotstedt and Petzold (1986)) that the k-step BDF
with constant step-size are also convergent to order O(Dtk) for semi-explicit in-
dex two DAEs and even index three of the type of equations (7.46) and (7.47),
when the initial conditions are defined within sufficient accuracy. This result has
been generalized (Gear et al. (1985)) for variable step-size and index two prob-
lems.

While the BDF seem to achieve convergence and yield satisfactory results for
a wide variety of DAEs, the actual implementation of the algorithms in general
purpose solvers is not free from serious numerical difficulties. This becomes
more acute for index three problems such as constrained multibody systems with
equations (7.46) and (7.47). Such difficulties stem from the following points:

¥ It can be shown that for an index m DAE, the tangent or quasi-tangent matrix
used in the Newton-Raphson iteration has a condition number of order
O(1/Dtm). Consequently, the practical implementation of the method is
bound to have large round-off errors for small sizes of the time step.

¥ Instabilities may result for sudden changes in the system variables and con-
straints, such as impacts or sudden appearances or disappearances of con-
straints. Any time there is a situation of discontinuity in the response, the
multistep BDF tries to fit a polynomial through such discontinuity, and the
step size must be severely reduced. This results in an ill-condition iteration
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matrix, and the Newton-Raphson iteration may end up near a solution and yet
be unable to converge. These problems can be circumvented as explained by
Steigerwald (1990) at the expense of reinitializing the integration with consis-
tent initial conditions which have to be obtained from the derivatives of the
constraint equations. This reinitialization produces serious delays in the inte-
gration process.

¥ The multistep methods are not self-starting. A k-step method requires suffi-
ciently accurate (kÐ1) starting values which have to be obtained by other
methods which may render the method sensitive to the starting values. This
problem also arises when either the time step or order of the BDF method is
changed during the integration process.

7.2.3  Solutions by Implicit Runge-Kutta Methods

The IRK methods have been used as an alternative to the BDF methods for the
integration of DAEs, offering some important advantages over them for the inte-
gration of multibody systems. Being single step, the IRK methods do not suffer
from systems discontinuities and changes in the order or time step as the BDF
do. The IRK are also self-starting which means that the only starting values re-
quired are the initial conditions. These methods have the disadvantage of leading
after the time discretization to larger and more complex sets of nonlinear alge-
braic equations. In addition, the convergence and stability analysis is still in
early stages and no public domain software is yet available.

The method consists of substituting the expression of the IRK (7.17) into the
system equations. In the case of the implicit type of equations (7.43), this sub-
stitution leads to

 F(tn + ci D t, yn +  D t aij kjå
j=1

r

, ki) = 0 ,     i = 1,2,...,r (7.57)

Once the system (7.57) is solved for the values of the stage derivatives ki, the
solution at step n+1 is given by equation (7.18). The application of the IRK to
the solution of the equations of motion of constrained multibody systems of the
form (7.48)-(7.50) becomes:

M(qn + Dt aij kjå
j=1

r

) Li = Qn+1 + FFFF q
T
(qn +  D t aij kjå

j=1

r

) lllln+1

i = 1, 2, ...,r 
(7.58)

k i = sn +  D t aij Ljå
j=1

r

        i = 1, 2, ..., r (7.59)

FFFF  (t n + ci D t, qn +  D t aij kjå
j=1

r

) = 0 (7.60)
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where ki and Li are the stage derivatives for the approximations to q and s, re-
spectively. Equations (7.58) to (7.60) have to be solved for the unknowns ki, Li,
and Lagrange multipliers llll . The resulting set of equations can be seen becom-
ing larger and more involved than that resulting from the application of the
BDF. Obtaining the tangent matrix of equation (7.58) for a Newton-Raphson it-
eration becomes an exceedingly complicated task. The use of the IRK method
still defies implementation in a general purpose DAE solver.

Stability conditions for index one and semi-explicit index two DAE are given
by Burrage (1982), and Brenan and Petzold (1989).

7.3  Considerations for Real-Time Simulation

Real time simulation of multibody systems requires an analysis time
(integration time plus time for graphical display) smaller than the physical time
taken by the actual motion of the multibody system. This has an important in-
fluence on the type of method used for the integration of the equations of mo-
tion. Commonly used integration routines in multibody dynamics are based on a
variable order, variable step size multistep methods with error control. The user
specifies the maximum allowable error, and the routine adapts the order and the
step to fulfill the error conditions. With this kind of integrators, it is not possi-
ble to predict the computer time necessary to integrate the equations on a deter-
mined period of time. Multistep methods adjust very poorly to force and/or sys-
tem discontinuities such as those arising from sudden forces and appearances or
disappearances of constraints, leading to very small time steps and ill-condition-
ing of the Jacobian matrices. Special formulas are required to restart the integra-
tion after system or force discontinuities. These restarting procedures do not fit
well into the real time condition, since the requirement for a fixed time of inte-
gration per time step will not be met.

Explicit multistep methods can be inexpensive and accurate for real time
analysis provided the time step is chosen sufficiently small. However, they do
not present good stability conditions This poses a serious limiting factor for real
time integration. Sometimes, the equations of motion may become stiff,
whereby the solution has components whose time constants can differ in several
orders of magnitude. It is convenient that the chosen integrator performs well
under such conditions. This makes the implicit stiffly-stable or A-stable methods
more suitable.

It seems that for real time integration, it would be more convenient to use an
implicit single step integration formula with fixed time step and order that will
have the same computational cost in each integration step (fixed number of itera-
tions) and will be capable of adjusting to system discontinuities. Since the com-
putational time needs to be smaller than the step size, the selected integration
method must be computationally inexpensive, with few function evaluations and
iterations in each step, and must allow for large step sizes without introducing
excessive loss of accuracy and, most importantly, must not become unstable.
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The stated preference towards implicit A-stable methods does not necessarily
mean that the explicit methods cannot be used for real time integration. This
would require, on the analyst's part, a previous knowledge of the range of the
values l(t) of the given problem, so that the necessary Dt may be chosen. As
soon as the problem has a certain degree of stiffness as most practical cases do,
the necessary time step will be so small that the use of an implicit method will
be more than justified.

The suitable methods for real time simulation of multibody systems should
be implicit, simple step, and inexpensive in terms of computational power re-
quired, with good stability properties (A-stability, if possible), and sufficiently
accurate. Accuracy contradicts other characteristics such as stability, economy
and single step integration. For real time applications, accuracy is the feature
that must be sacrificed in conflicts with other properties. It is better to obtain a
solution with some small error than not be able to obtain it at all in the allowed
time. Moreover, many real time applications incorporate a feedback control ei-
ther embedded in the dynamic formulation or carried out visually as in the case of
a teleoperator training system. Feedback control helps to compensate errors and
disturbances, including integration errors.

According to these considerations and in view of the theory and methods ex-
plained above, it seems that the methods used in structural dynamics (Newmark
family, a-method, collocation methods), the midpoint rule, and the implicit
Runge-Kutta methods are suitable choices for the integration of the equations of
motion in their ODE form. In particular, the a-method which adds artificial
damping to the trapezoidal rule without losing second order accuracy, the general-
ized trapezoidal rule with energy or velocity constraints, and midpoint rule seem
to be good choices and somehow preferable over the more expensive implicit
Runge-Kutta methods. However, in order to make these methods computation-
ally inexpensive, it is necessary to limit the number of iterations necessary to
solve the resulting system of algebraic nonlinear equations. We will show in
Chapter 8, how the trapezoidal rule with velocity constraints performs very satis-
factorily in real time analysis when it is directly introduced in the equations of
motion of multibody systems. We will also show how this integration scheme
fits quite well in the framework of the natural Cartesian coordinates and the
penalty formulation, because it allows for a very simple expression of the tan-
gent matrix necessary for the Newton-Raphson iteration.

Regarding the integration of the equations of motion in their DAE form, it
seems that currently available DAE solvers are not capable of competing against
their ODE counterparts in speed of integration.
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Problems

7/1 Integrate the second order differential equation: y+y=0 with initial conditions
y(t=0) =1 and y(t=0)=0, during the time interval [0,10] with Dt=0.1, using the
following methods:
a) The trapezoidal rule (Newmark with g=1/2 and b=1/4).
b) The a-method with a = Ð0.1.
c) The backward difference method with p=1 of Table 7.3 equivalent to
Newmark with g=1 and b=1/2.
In all cases, introduce the difference equations of the corresponding algorithm
into the equation of motion and solve the resulting set of linear equations for the
unknown yn+1. Plot the results of each of the methods and the exact solution and
compare the period elongation and amplitude decay. Draw some conclusions
about the accuracy and artificial damping introduced by each of the methods.

7/2 Write a subroutine for the integration of the first order differential equations us-
ing the four order Adams-Bashforth-Moulton predictor-corrector algorithm (Eqs.
7.22 and 7.23). Solve Problem 7/1 by transforming the second order equation
into a set of two first order ones and then using the new subroutine. Compare
your results with those obtained in Problem 7/1.

7/3 Formulate the equations of motion of the double pendulum used in the numerical
example of Section 7/1 including rotational dash pots and using the two inde-
pendent joint coordinates. Then use the trapezoidal rule and the Adams-
Bashforth-Moulton predictor-corrector algorithm developed in Problem 7/2 (or
any other multistep method available in the software library of your computer).
Write up a table with the energy errors and CPU times obtained by both methods
for different values of the springs and dash pots.

7/4 Repeat Problem 7/3 using the Cartesian coordinates of the ends of the two links
with additional constraints to introduce the joint angles. Then use the penalty
formulation (Chapter 5) to form the equations of motion (take a penalty value
equal to 107). Compare the results with those obtained in Problem 7/3.

7/5 Repeat Problem 7/4 with the same coordinates and the Lagrange multiplier for-
mulation to form the equations of motion of the type of equation (7.46). Then
use the backward difference formula with p=1 (Table 7.3) to solve the resulting
set of differential and algebraic equations. Compare your results with those ob-
tained in Problems 7/4 and 7/3.


