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9
Linearized Dynamic Analysis

Several ways of formulating the differential equations of motion of a multibody
system have been presented in Chapter 5. These equations are fully nonlinear in
either the independent or dependent coordinates. The solution of these non linear
equations is required in order to simulate the dynamic behavior of multibody sys-
tems that undergo large displacements and rotations. However, many systems
work mostly on the proximity of a fixed or constant dynamic equilibrium
configuration. It is very convenient to linearize the equations of motion about
this equilibrium configuration, so as to take advantage of the linear analysis
tools: fast computation of linear response, eigenvalue analysis, control design by
pole placement, or other linear techniques, that are not available or at least are
more complicated for the fully nonlinear models.

This chapter deals with several techniques that linearize the most commonly
used forms of the equations of motion. In particular, closed-form and numerical
computation of the derivatives of the equations of motion will be considered. In
addition, linearization methods of these equations expressed in terms of dependent
(using the penalty formulation) and independent coordinates as well as in the
canonical form will be explained. This chapter will end with a short review of
the available methods used to compute the response of the linear system and its
frequencies and mode shapes.

9.1  Linearization of the Differential Equations of
Motion

In this section a constant or fixed dynamic configuration will be considered, such
that position y, velocity y , acceleration y , and external forces Q that satisfy the
equations of motion will be symbolically expressed in the form:

H(y, y , y, Q) = 0 (9.1)

The dynamic equilibrium configuration will be denoted by the subscript (0).
Hence, the equations of motion at the equilibrium configuration can be written
as
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H 0 º  H(y0, y0, y0, Q0) = 0 (9.2)

Small perturbations of the equilibrium configuration variables can now be
considered. The equations (9.1) will be linearized by replacing them with the first
two terms of the Taylor's series expansion about the dynamic equilibrium con-
figuration,

H (y0 +  Dy0, y 0  +  Dy0, y 0  +  Dy0, Q 0 +  DQ0) @ H0 +  DH 0 =

= H(y0, y0, y0, Q 0) + H y D y +  Hy  Dy +  Hy  Dy +  H Q DQ = 0
(9.3)

According to equation (9.2)

H y D y +  Hy  Dy +  Hy  Dy +  H Q DQ = 0 (9.4)

which constitutes the linearized set of equations of motion. The main issue is
now to compute the partial derivatives that appear in equation (9.4). The follow-
ing subsections deal with this problem for those cases in which y represents ei-
ther the independent coordinates z, or the dependent ones q, and for the case when
H is represented in canonical form.

9.1.1  Independent Coordinates

According to equation (5.67), the equations of motion in terms of independent
coordinates take the form:

H(z, z, z, Q) º R(z)
T
 M(z) R(z) z Ð

Ð R(z)
T
 (Q(z, z , f) Ð M(z) Sc(z, z)) =  0

(9.5)

where M  is the inertia or mass matrix, R  is the velocity projection matrix
whose columns span the nullspace of the Jacobian matrix FFFFq, (Sc) is the term
that accounts for the velocity-dependent accelerations, and Q are the generalized
forces that depend on the inertia and applied external forces f. In expression (9.5),
the dependence of each term or factor with respect to the configuration variables
has been introduced explicitly. Remember (See equations (5.64) and (5.65)) that
matrix R and vector (Sc) came from the expressions

 
FFFFq

B
 q = c

z
 (9.6)

q = 
FFFFq

B

Ð1

 c
z

 = S c + R  z (9.7)

Then the partial derivatives of function H take the following form:

H z = (RTM R z +  R z
TM R +  RTMzR) z Ð

Ð  R z
T  ( Q Ð  M Sc ) Ð  RT (Q z Ð  M z (Sc) Ð  M(Sc)z)

(9.8)
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Hz = RT (Qz Ð  M(Sc)z) (9.9)

Hz = R T M R (9.10)

H f = RT Qf (9.11)

All these derivatives must be evaluated at the equilibrium configuration. If the
equilibrium configuration is static (z0 = z0 = 0), equations (9.8)-(9.11) are very
much simplified, because all terms depending on velocities and accelerations van-
ish.

In the sequel, ways of evaluating some of the partial derivatives that appear in
the RHS of equations (9.8)-(9.11) will be considered.

i) Computation of Rz. There are several possible ways to compute the partial
derivative of matrix R with respect to the vector of independent coordinates z.
Here,  a method based on the acceleration analysis will be presented.

If the system is scleronomic, matrix R relates dependent and independent ve-
locities in the form:

q = R z = ri ziå
i=1

f

(9.12)

where ri is the i-column of matrix R. Differentiating this expression with re-
spect to time and taking into account that R depends explicitly on the position
variables only,

q = ( ¶R
¶zj

å
j=1

f

 zj) z +  R z  = ¶ri

¶zj
å
j=1

f

å
i=1

f

 zi zj + R z (9.13)

This expression offers a simple way to compute the derivatives of R .
Remember that this matrix is of order (n´f). Its derivative ¶R/¶zi  is also a ma-
trix of size (n´f), but the derivative ¶R/¶z is a hyper-matrix of size (n´f´f).
Equation (9.13) suggests that the derivatives of the columns of R can be com-
puted through an acceleration analysis. For instance, by making

a) zi = 0  (i=1,...,f);   zi = 1, zj = dij

q = ¶ri

¶zi

(9.14)

b) zi = 0  (i=1,...,f);   zi = 1, zj = 1, zk = 0 (k ¹ i, j)

q = ¶ri

¶zi

 + ¶rj

¶zj

 + 1
2

 (¶ri

¶zj

 + ¶rj

¶zi

) (9.15)

This expression yields

¶ri

¶zj

 = ¶rj

¶zi

 = 1
2

 (q Ð ¶ri

¶zi

 Ð ¶rj

¶zj

) (9.16)
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There are a number of (f2 + f)/2 acceleration analyses. They can be done
rather inexpensively, because all of them use the same LU factorization of the
Jacobian matrix. Therefore, only one forward reduction and back substitution is
needed per acceleration analysis. If the multibody system is open-loop, these
evaluations can be made even more cheaply.

ii) Computation of Mz. The computation of the derivatives of the inertia matrix
with respect to the position variables is strongly formulation dependent.

If one considers fully Cartesian coordinates and bodies with four non-
coplanar points and/or unit vectors, the mass matrices are constant (See Section
4.2.2). Consequently, their derivatives are zero. If the bodies do not have
constant inertia matrices (See Section 4.2.2.3), it is still possible to consider a
virtual power transformation that allows one to compute the rigid body inertia
matrix in the form:

MMMM new = VT M V (9.17)

and the additional velocity dependent inertia forces in the form:

Q inertia = VT M V q (9.18)

where M is constant and V is position dependent. Thus,

(Mnew)z = V T  M Vz +  V z
T M V (9.19)

According to equation (4.72), matrix V has the expression:

V = 

I3 0 0

0 I3 0

0 0 I3

Ðc u   c u  c rij

  (9.20)

This matrix depends explicitly on the dependent coordinates vector q. Hence,
using the chain differentiation rule,

V z = V q ¶q
¶z

 + V R (9.21)

where Vq is a hyper-matrix with most of its components equal to zero.
If reference point coordinates are used, the inertia matrix of a rigid body

takes the form (See equation (8.15)):

M i  =  mi I3 0

0 A i J i A i
T

(9.22)

where Ai is the rotation matrix of this element. This rotation matrix introduces
the position dependency in matrix Mi. Thus, it is possible to write:
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M i,z  =  
    0     0

0 A i,z J i A i
T

 +  A J i A i,z
T

(9.23)

The derivative Ai,z can be computed using again the chain rule of differentia-
tion:

A i,z = A i,q ¶q
¶z

 + A i,q R (9.24)

where Ai,q can be computed easily in terms of the variables used to define angu-
lar orientation, that is, Euler angles or Euler parameters.

iii) Computation of (Sc)z. In order to compute this derivative, it may be useful
to return again to equation (5.65) written in the form:

q = R(z) z +  S c (9.25)

Taking time derivatives and assuming scleronomic constraints yields

ÇÇÇ ÇÇÇ Ç ÇÇ Ç ÇÇÇq R z Rz Sc z Sc zz z= + + +( ) ( ) (9.26)

This equation offers the opportunity of computing the derivative (Sc)z by
means of a jerk analysis. This is not significantly more complicated or expen-
sive than a velocity or acceleration analysis, because it uses again the same LU
factorization of the Jacobian matrix FFFFq.

By making ÇÇ ÇÇÇ , Ç , Ç ,z z 0= = = = ¹  and  for z z j ii j1 0  in equation (9.26), one can
obtain

ÇÇÇq
Sc= ¶
¶
( )

zi
(9.27)

iv) Computation of (Sc)z . This derivative can also be computed from equation
(9.26) in two steps:
Ð with  ÇÇ ÇÇÇz z 0= =  and the true velocities z, a jerk analysis based on equation

(9.26) yields
ÇÇÇ Çq Sc zz= ( ) (9.28)

Ð now, assuming that R  is known and making ÇÇÇz 0= , the following expression
is obtained:

ÇÇÇ Ç Ç
Ç

q r Sc z
Sc

z= + + ( ( ) )
( )i

iz

¶
¶

(9.29)

from which the desired derivative can be obtained.
There is another way to compute this derivative. Equation (9.7) states that

matrix S depends on the position but not on the velocity vector z. Thus, taking
into account that c is given by the expression:

c = Ð  FFFF t Ð  FFFF q q (9.30)
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Figure 9.1.  Double pendulum rotating about a vertical axis.

which contains terms that depend explicitly on z. The derivative can be found as

(S c)z  =  S cz  =  S cq  ¶q

¶z
 = S cq R (9.31)

The main disadvantage of equation (9.31) is that it requires the explicit evalu-
ation of matrix S. That is not necessary when computing this derivative using
the first way.

v) Computation of Qz, Qz, and Qf. These derivatives are strongly case dependent.
It is not expected that one will have any particular difficulty in their evaluation.

Example 9.1

Consider the double pendulum of Figure 9.1. Each link has a length equal to 2l and
a lumped mass m = 1 at both ends. The double pendulum is rotating about the verti-
cal axis with a constant angular velocity w. Due to the gravity effects, the pendu-
lum reaches the equilibrium position at angles j1 and j2. Considering the depen-
dent Cartesian coordinates of the ends 1 and 2 {x1, y1, x2, y2}, the mass matrix M
becomes

M =

2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

The vector of generalized forces Q composed of the gravity forces and the cen-
trifugal forces corresponding to the rotation about the vertical axis is
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Q=

4 lw2 sinj1

Ð2g

2 lw2 sinj1 +sin j1 +j2

Ðg

If the two angles j1 and j2 shown in the figure are taken as independent coor-
dinates, the matrix R becomes

R = 

2 l cosj1 0

2 l sinj1 0

2 l cosj1 +cos j1 +j2 2 l cos j1 +j2

2 l sinj1 +sin j1 +j2 2 l sin j1 +j2

and the product (R z ) is

R z =  

Ð2 l sinj1j1
2

2 l cosj1j1
2

Ð  2 l sinj1j1
2

Ð  2 l sin j1 +j2 j1
2
+j2

2

2 l cosj1j1
2
 + 2 l cos j1 +j2 j1

2
+j2

2

We desire to linearize the equations of motion about the equilibrium position
given by j1, j2, j1 =j2 = 0, and j1 =j2 =0. After a tedious but straightforward ma-
nipulation of expressions, one can verify that the linearized equations of motion
are:

ADz +B Dz =0

where

A = 4l 2 
2  2 +sinj2 1 +sinj2

1 +sinj2 1

and

B = Ð 2 g l 
cos j1+j2  + 3 cos j1 cos j1+j2

cos j1+j2 cos j1+j2
 +

 
 

+ 4l 2w2 

2cos 2j1+j2 +
+cos 2j1+2j2 +3cos 2j1

cos 2j1+2j2 +
+cos 2j1+j2

cos 2j1+2j2 +
+cos 2j1+j2

cos 2j1+2j2  Ð
Ð sin j1+j2  sin j1

9.1.2  Dependent Coordinates

It is implied in the linearization of a set of nonlinear equations that the differen-
tiation takes place with respect to independent variables. The linearization of the
equations of motion formulated as a function of the dependent coordinates q is
not entirely meaningful when the Lagrange multipliers method is used to formu-
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late the equations of motion (See Section 5.1.1.). If the penalty formulation is
used (See Section 5.1.4.), the elements of the vector q are considered as mathe-
matically independent or unconstrained. Therefore, the partial derivatives of the
equations of motion with respect to q and with respect to its time derivatives q
and q have a full mathematical meaning. In addition, it can be seen that the re-
sulting equations are simpler than those resulting from the use of the indepen-
dent coordinates z as seen in the previous section.

Using the penalty formulation with holonomic constraints (See Section
5.1.4.), the equations of motion (9.1) take the following form:

H(q, q , q , Q) º  M(q) q +  FFFFq
T(q) aaaa  (FFFF(q, q , q) +

+  2  mmmm  WWWW  FFFF(q, q) +  WWWW 2  FFFF(q)) Ð Q(q, q , f) = 0
(9.32)

where aaaa is the diagonal matrix of penalty factors, and mmmm and WWWW also are constant
diagonal matrices that control the frequency and the damping of the constraint
violations. In equation (9.32), the dependencies of each term or factor with re-
spect to the configuration variables have been made explicit again.

Assuming that the constraints are scleronomic, the first and second time
derivatives of the constraint equations can be written in the form:

FFFF  = FFFFq(q) q (9.33)

FFFF  = FFFFq(q) q +  FFFFq(q, q) q (9.34)

Then the partial derivatives of the equations of motion (9.32) take the form:

H q = M q q +  FFFF q q
T  aaaa  (FFFF  +  2  mmmm  WWWW  FFFF  +  WWWW 2  FFFF) +

+   FFFFq
T aaaa  (FFFF qq q +  FFFF qq q +   2  mmmm  WWWW  FFFF qq q +  WWWW 2  FFFF q) Ð  Qq

(9.35)

Hq = FFFFq
T

 aaaa  (FFFFqq q +  FFFFq +  2  mmmm  WWWW  FFFFq)  Ð  Qq (9.36)

Hq  =  M +  FFFFq
T aaaa  FFFFq (9.37)

H f = Qf (9.38)

These derivatives are particularly simple to evaluate if natural (or mixed) co-
ordinates are used. If only Cartesian coordinates are used, the constraint equations
are quadratic, and then FFFFqq is a constant and very sparse hyper-matrix of dimen-
sion (n´n´n). In addition, the terms FFFF q q and FFFFqq  will be zero. If a few relative
or joint coordinates are used (mixed coordinates), these terms will no longer be
zero, but only a few of their elements need to be computed. Expressions (9.35)-
(9.38) become even simpler when considering a static equilibrium configuration
at which q0 = q0 = 0.
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Example  9.2

Repeat Example 9.1 using natural coordinates and the dependent coordinates for-
mulation .

Considering the set Cartesian coordinates of the two lumped masses at the end
of each link x 1, y 1, x 2, y 2 , the mass matrix takes the following form:

M = 

2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

The constraint equations based on the constant distance between the masses is:

FFFF = 

1
2

 (x 1
2 + y 1

2 Ð (2l)2 = 0) 

1
2

 (x 2 Ð x 1)2 + (y 2 Ð y 1)2 Ð (2l)2 = 0) 

The Jacobian matrix of the constraints becomes

FFFFq = x 1 y 1 0 0
(x 1 Ð x 2) (y 1 Ð y 2) (x 2 Ð x 1) (y 2 Ð y 1)

The force vector is directly obtained as a combination of gravity forces in the y
direction and centrifugal forces in the x direction:

QT = 2  w2 x 1 Ð  2  g w2 (x 1 + x 2) Ð  g

where g is the acceleration of gravity, and w the constant angular velocity. At the
generic position x 1, y 1, x 2, y 2  where the equations are to be linearized, the fol-
lowing conditions are met: FFFF  = 0,  FFFF  = 0,  and FFFF  = 0. Since the mass matrix is con-
stant, Mq = 0,  Qf = 0, and Qq = 0. Finally, Qq is

Qq = 

2w 2 0 w2 0
0 0 0 0
w2 0 w2 0
0 0 0 0

Applying equations (9.35), (9.36), and (9.37) the following results are ob-
tained:

Hq = FFFFq
T
 aaaa WWWW

2
 FFFFq Ð Qq

Hq = FFFFq
T
 aaaa  2 mmmm WWWW  FFFFq

Hq = M + FFFFq
T
 aaaa FFFFq

The final set of linearized equations becomes:

(M + FFFFq
T
 aaaa FFFFq)Dq + (FFFFq

T
 aaaa  2 mmmm WWWW  FFFFq)Dq + (FFFFq

T
 aaaa  WWWW

2
 FFFFq Ð Qq)Dq = 0

where all the matrices have been previously defined.
This approach is much less involved than that resulting from the use of inde-

pendent coordinates.
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9.1.3  Canonical Equations

Another route to the linearization process can be taken through the canonical
formulation of the equations of motion previously seen in Chapter 5. The aim of
this section is to show in a simple manner another possible approach to the lin-
earized dynamic analysis. The use of canonical equations will be limited to the
case of dependent coordinates with the penalty formulation for the introduction of
the constraint conditions.

The canonical approach as seen in Section 5.4 leads to 2n first order differen-
tial equations in terms of the momenta p and coordinates q

H1 = p  Ð  FFFFq

T

 aaaa  FFFF  + FFFFq

T
 aaaa  (WWWW

2
 FFFF  + 2  mmmm WWWW  FFFF) Ð  Q = 0  (9.39)

H 2 = M +  FFFFq
T aaaa  FFFFq  q Ð  p = 0 (9.40)

where it has been assumed that the constraints are scleronomic. The vector y is
now composed of 2n  entries, p and q. The partial derivatives of H1 and H2 be-
come:

(H1)p = 0 (9.41)

(H1)q = FFFFqq
T

 aaaa  (WWWW 2
 FFFF  +  2  mmmm  WWWW  FFFF) +

+  FFFFq
T

 aaaa  (WWWW 2
 FFFFq +  2  mmmm  WWWW  FFFFq)  Ð  FFFFqq aaaa  FFFF  Ð  FFFFq

T
 aaaa  FFFFq Ð  Qq

(9.42)

(H2)p = Ð  I (9.43)

(H2)q = M q +  FFFFqq
T

 aaaa  FFFFq +  FFFFq
T

 aaaa  FFFFqq  q (9.44)

(H1)p = I (9.45)

(H1)q = Ð  FFFFqq

T
 aaaa  FFFF  Ð  FFFFq

T
 aaaa  FFFFq +  FFFFq

T
 2  mmmm  aaaa  WWWW  FFFFq Ð  Qq (9.46)

(H2)p = 0 (9.47)

(H2)q = M +  FFFFq
T

 aaaa  FFFFq (9.48)

(H1)f = Ð  Qf (9.49)

(H2)f = 0 (9.50)

Similar to the acceleration-based formulation, some of these partial deriva-
tives cancel out when using the fully Cartesian coordinates, since FFFFqq is a con-
stant tensor. The linearized set of equations in phase space takes the following
form:
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DH 1 º  (H1)p  Dp +  (H1)q  Dq + (H1)p Dp + (H1)q Dq + (H1)Q DQ = 0 (9.51)

DH 2 º  (H2)p  Dp +  (H2)q  Dq + (H2)p Dp + (H2)q Dq + (H2)Q DQ = 0 (9.52)

that expressed in matrix form gives the final result

I (H1)q

0 (H2)q
 
Dp
Dq

 +  
0 (H1)q

ÐI (H2)q
 
Dp
Dq

 +  
(H1)Q DQ

0
 = 0 (9.53)

9.2  Numerical Computation of Derivatives

The expressions for the partial derivatives in the linearized dynamic equations
(9.3), both using independent and dependent coordinates, have been found in the
previous section. Some of these derivatives are straightforward, but others are
more complicated. As a whole, the computer implementation of these linearized
dynamic equations may end up being tedious and cumbersome. An alternative
way will be presented in this section to find these derivatives, that can be very
interesting in practice because of its simple theoretical formulation and computer
implementation. This alternative way relies on the numerical computation of the
partial derivatives of the dynamic equilibrium equation (9.1).

The linearization of the differential equations of motion is a task that is nor-
mally performed only once in each program execution. It differs from the direct
and/or inverse dynamics formulations that are applied again and again in each
step of the numerical integration process. The linearization of dynamic equa-
tions, like the solution of the static equilibrium position problem, is a task that
can be carried out in the preprocessing phase, so its numerical efficiency is a
second order of importance factor. In most practical cases, it is more convenient
to be able to implement it in an easier way.

Formulas for numerical computation of derivatives can be found in many text
books on numerical analysis (Burden and Faires (1985), Smith (1986), and
Chapra and Canale (1988)). If choice is restricted to symmetric formulas that are
the most accurate for the same number of function evaluations, one can include
the following expressions to evaluate the first derivative of a function:

Ð Three-point 0(h2) formula,

f'(x) = 1
2h

 f(x + h) Ð f(x Ð h)  Ð h
2

6
 f

(3 )
(x) (9.54)

Ð Five-point 0(h4) formula,

f'(x) = 1
12h

 f(x Ð 2h) Ð 8 f(x Ð h) + 8 f(x + h) Ð f(x + 2h)  Ð h
4

30
 f (5)(x) (9.55)

If formula (9.54) is applied to the dynamic equilibrium equation (9.1), it can
be written (assuming independent coordinates z)
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¶H
¶zi

 = 1
2h

 H(z +  h i, z , z , Q) Ð H(z Ð  h i, z , z , Q) (9.56)

where hi
T = 0, 0, ...,0 , h, 0, ...,0 . Analogous expressions can be used for the

remaining partial derivatives, with respect to z, z, and Q.
Equation (9.54) requires 2f function evaluations to compute the partial deriva-

tive with respect to z, and it is second order accurate. On the other hand, equation
(9.55) requires 4f function evaluations, but it is fourth order accurate. Equation
(9.55) should be preferred in most practical cases.

The choice of an adequate size for the increment h is problem dependent. It
can be different for positions, velocities, accelerations, and forces and even for
each component of these vectors. The use of h = 10Ð2 to 10Ð5 should provide
good results in most practical cases.

9.3  Numerical Evaluation of the Dynamic Response

Once the partial derivatives are obtained, the resulting linear equations of motion
(9.4) or (9.53) can be integrated using the methods explained in Chapter 7 for the
integration of differential equations. In addition, standard techniques widely ap-
plied in linear structural analysis may be used as well. Refer to Craig (1982) and
Meirovitch (1980) for a detailed description of these methods.

Of particular importance is the evaluation of the linearized natural frequencies
and mode shapes around a particular configuration. These are helpful not only for
the dynamic response but also for design purposes and vibration control.

Similar to equation (9.53), the matrix differential equations of motion in ac-
celerations (9.4) may also be written as a set of 2n equations in state space
form:

 Hy 0

0 I
 Dy
Dy

 +  
 Hy H y

Ð  I 0
 Dy
Dy

 = 
Ð  HQ DQ

0
(9.57)

Whether in phase space form (9.53) or state space form (9.57), the linearized
equations of motion can be written in simplified notation as

A u +  B u = U(t) (9.58)

where u and U represent the linearized response and forcing terms, respectively.
Notice that for dependent coordinates with the penalty formulation,

Hy = (H2)q = M +  FFFFq
T

 aaaa  FFFFq (9.59)

Therefore, A is a non-singular matrix, with B being a non-symmetric matrix.
The eigenvalue problem associated with (9.58) has the following form:

l  A v +  B v = 0 (9.60)
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where l is the eigenvalue and v the eigenvector. Equation (9.60) may also be
written as

l  v = D v (9.61)

where D = Ð  A
Ð1 

B. Equation (9.61) represents a standard eigenvalue problem,
but with D being non-symmetric. Its solution will lead to 2n eigenvalues and
eigenvectors that are real or complex in conjugate pairs. Jennings (1979) affirms
that the reduction of equation (9.61) to its upper Hessenberg form and subsequent
use of the QR method for the eigen-solution leads to a very efficient algorithm
for matrices whose order does not exceed 100. These algorithms are available
through standard mathematical subroutine packages that run in a diversity of
computers.

The real part of the eigenvalue l  represents the decay of the amplitude of the
natural mode. The imaginary part represents the damped frequency. The eigenvec-
tors v can also be used to uncouple the linearized equations of motion (9.58)
since they obey the orthogonality conditions:

v i
T  A v i = ai (9.62)

v i
T  B v i = bi (9.63)

Introducing the linear transformation

u = v i riå
1

2 n

(9.64)

into equation (9.58) and pre-multiplying the same equation by v i
T one obtains

the following set of uncoupled first order equations with complex entries:

v i
T  A v i ri +  v i

T  B v i ri = v i
T  U(t) (9.65)

or

ai ri + bi ri = vi
T  u(t)   (9.66)

which can be solved using the standard methods explained in Chapter 7.
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