
271

8
Improved Formulations for Real-Time
Dynamics

The general purpose dynamic formulations described in Chapter 5 are simple and
efficient, but they are not suitable for real time dynamic simulation. Real time
performance requires faster formulations. These can be developed by taking into
account the systemÕs kinematic configuration or topology. In the last two
decades, a big effort has been dedicated to developing very efficient dynamic for-
mulations for serial robots or manipulators. These formulations have been ex-
tended later on to general open and closed chain configurations.

In the first section of this chapter, a survey of two of the most efficient avail-
able formulations that need O(N3) and O(N) arithmetic operations is presented. It
follows, a detailed description of a formulation based on velocity trans-
formations that can be parallelized at body level. In the next section, a descrip-
tion of how the penalty formulation can be used for improved performance is
also included. Finally, two complex examples: a model of the human body and a
heavy truck, with theoretical count of arithmetic floating-point operations, and
some numerical results are presented.

The methods and results presented in this chapter are contributions coming
mainly from Jim�nez (1993), and Avello et al. (1993).

8.1 Survey of Improved Dynamic Formulations

Most of the improvements in multibody dynamic formulations that have been
developed in the last 25 years come from the robotics field. This field was very
active in the 60Õs and 70Õs with scientists trying to solve very hard problems of
simulation and control with the limited computational resources available at that
time. Anyone familiar with robot control algorithms based on dynamic models
knows the very competitive race that took place in order to decrease the number
of arithmetic operations required for the inverse dynamics in serial robots. This
research was quite important and led to the solution of the inverse dynamic prob-
lem two or three hundred times per second with a DEC-PDP 11 processor. The
recursive Newton-Euler formulation seems to have been the winner of the race

272 8. Improved Formulations for Real-Time Dynamics

(Luh, Walker, and Paul (1980)), at least for general geometries of serial manipu-
lators with about six degrees of freedom.

Inverse dynamics, which consists in computing the motor torques and/or
forces required to produce a desired motion, was directly interrelated to control
purposes. However, it was realized that the high efficiency reached in solving the
inverse dynamics could also benefit the formulation of the simulation problem,
That is, the computation of the accelerations from the state variables (position
and velocities) and the external and driving forces. As it may be seen in Walker
and Orin (1982), the solution of the inverse dynamics allows for a formulation
of the equations of motion much more efficient than conventional or even recur-
sive Euler-Lagrange formulations.

Other authors, such as Armstrong (1979) and Featherstone (1983, 1987) have
developed fully recursive O(N) algorithms for open-chain systems, that is, algo-
rithms whose number of floating-point arithmetic operations grows linearly with
the number of degrees of freedom or bodies in the open-chain. The algorithms of
Walker and Orin (1982) conclude with the solution of a system of N linear equa-
tions. They are of order O(N3), if Gaussian elimination is used.

Although it has been demonstrated (Featherstone (1987)) that the best O(N3)
algorithms are better and faster than the best O(N) algorithms for N<10 (that is,
for most of the practical cases), the elegance and attractiveness of the
FeatherstoneÕs O(N) formulation has exerted a strong influence on later develop-
ments that have generalized these ideas for non-serial (tree-configuration) systems
(Bae and Haug (1987)) and closed-loop systems (Bae and Haug (1987-88),
Rodriguez et al. (1991)). A limitation arises when closed-chain multibodies are
analyzed, since for these cases special provisions must be made to account for
the reaction forces between the different loops. More interest has been placed re-
cently in looking for improved efficiency using O(N3) methods in cases with
small values of N per chain (Bae, Hwang and Haug (1988), Bae and Won
(1990)).

The foundations of the O(N3) formulation of Walker and Orin (1982), the
O(N) formulation of Featherstone (1987), and the generalizations of Bae and
Haug (1987-88) will be described in the following subsections . Since it is not
possible to reproduce these formulations in detail, the fundamental ideas on
which each formulation is based will be outlined. Those interested in further de-
tails are referred to the original references given at the end of the chapter.

The number of floating-point arithmetic operations has been the criterion fol-
lowed to compare the efficiency of different dynamic algorithms. From the 60's
to the late 80's, this seemed to be the most reasonable criterion, since the aver-
age computers required over 20 times more CPU time to carry out a SP or a DP
floating-point operation than an integer operation. Thus, it made full sense to
neglect integer or logical operations and to draw comparative conclusions only
from the theoretical account of floating-point operations. This procedure does not
make sense any longer, since the RISC computers of the 90Õs have similar CPU
cost for integer and floating-point operations. The new RISC processors can
carry out two double precision floating-point operations (a product and an accu-

8.1 Survey of Improved Dynamic Formulations 273

1

2
Forces backward propagation

Velocities and accelerations
forward propagation

z1

z2
z3

z4
z5

z6

Figure 8.1. Recursive Newton-Euler method.

mulative addition) for each clock cycle. In these new machines, a clear and neat
logic of the algorithm and an efficient use of the registers and of the cache mem-
ory can be more important than the number of floating-point operations. It will
be seen that the methods presented in Sections 8.2 and 8.3 are simpler than other
methods found in the literature. Moreover, these methods offer excellent oppor-
tunities to get very efficient computer implementations on modern computers
using high level languages.

8.1.1 Formulations O(N3): Composite Inertia

One of the most efficient dynamic formulation for serial robots with N<10 is the
one based on the recursive Newton-Euler solution of the inverse dynamic prob-
lem (Walker and Orin (1982)). This formulation proceeds as indicated below.

The inverse dynamics consists in determining the vector tttt of the N motor
torques and/or forces from the external forces Qex and the joint positions z, ve-
locities z, and accelerations z. Symbolically, it can be written

tttt = tau(Qex, z , z , z) (8.1)

where tau(Ð) represents a function that solves the inverse dynamics for the val-
ues of the input parameters.

The recursive Newton-Euler method proceeds as indicated in Figure 8.1. In the
first step, the joint positions, velocities, and accelerations are recursively propa-
gated forward to compute the absolute link position, velocity, and acceleration
and from them the inertia forces. In the second step, inertia and external forces
are recursively propagated backwards so as to compute the equilibrating actuator
forces and torques. If local reference frames are properly chosen on each body and
used for the recursive equations, one can further reduce the computational cost.

274 8. Improved Formulations for Real-Time Dynamics

Sym.

H(z)
i-1

i

i+1 N

a) b)

body i-1

body i

zN=zN=0

zi+1=zi+1=0

zi=1

zi=0

zi-1=zi-1=0

Figure 8.2. Composite-Inertia method.

Now it will be described how the inverse dynamic solution given by equation
(8.1) can be used for direct dynamic simulation following Walker and Orin
(1982). The equations of motion can be written in the form,

M(z) z + C (z, z) z + G(z) + Q(z, Q ex) = tttt (8.2)

where M(z) is the position-dependent inertia matrix, C (z, z) z is a term repre-
senting velocity-dependent (centrifugal and Coriolis) inertia forces, G(z) repre-
sents the effect of gravitational forces, and Q(z , Q e x) represents the vector of
generalized external forces. Remember that in the direct dynamic problem, every-
thing is known except the accelerations z.

If a vector b is defined as

b º C z , z z + G z + Q z , Qex (8.3)

equation (8.2) can be written as

M(z) z = tttt Ð b (8.4)

Now, all the terms in equation (8.4) can be computed with the inverse dynam-
ics function tau(Ð) defined in (8.1):

Ð From equations (8.2) and (8.3), b can be computed by introducing a null ac-
celeration in equation (8.1)

b = tau(Qex, z , z , 0) (8.5)

8.1 Survey of Improved Dynamic Formulations 275

i-1

i

si-1

r i-1

ti

r i

zi

ui

Figure 8.3. Revolute joint between contiguous bodies.

Ð From equation (8.4) it can be seen that the column i of M(z) can be obtained
with an acceleration vector e i (all elements zeroes, except for a unit value on
component i),

m i(z) = tau(0, z , 0, e i) i = 1, 2, ..., N (8.6)

Ð Once all the columns of M(z) and vector b have been computed, the actual
acceleration vector z can be obtained by solving the linear system of equa-
tions (8.4).

This algorithm can be improved if one takes into account that the matrix
M(z) is symmetric and only the upper (or the lower) part needs to be calculated.
The most efficient algorithm is the so-called composite inertia method (Walker
and Orin (1982)). This method computes only the terms of M(z) located over the
diagonal, starting from column N and proceeding to column 1 (See Figure 8.2a).
In order to compute column i use equation (8.6). This equation computes the
torques and/or forces in joints (1, 2, ..., i) with null velocities and null accelera-
tions in all the joints, except in joint i, where zi = 1 (See Figure 8.2b).

At the time of computing column i, the joints from (i+1) to N have zero ve-
locity and zero acceleration. Furthermore, for all j<i, that is, in all subsequent
calls to function tau(Ð), both the velocity and acceleration of joints (i+1),
(i+2), ... , N remain zero. Therefore, bodies i to N do not exhibit relative veloci-
ties and accelerations and move as a single rigid body. Walker and Orin's idea
(1982) makes use of this property and computes the composite inertia, or inertia
of a fictitious rigid body, with the same center of gravity and inertia tensor as the
set of rigid bodies i, (i+1), ... , N. The composite inertia is updated before�each
call to function tau(Ð). For instance, before computing column (iÐ1), the inertia
of body i is added to the composite inertia. The complexity of expressions in
this method can be considerably reduced by choosing appropriate local (body-
fixed) reference frames. So far, the composite inertia method is the most efficient
general purpose algorithm for serial manipulators with N<10 which includes
most practical cases.

276 8. Improved Formulations for Real-Time Dynamics

8.1.2 Formulations O(N): Articulated Inertia

This method has been fully developed by Featherstone (1983, 1987) and has had
a major influence on later works, in spite of being less efficient than the com-
posite inertia method for N<9. Featherstone described this method using spatial
vector notation for both the kinematic and dynamic equations. This notation
yields simpler, more compact and more efficient expressions, but many engi-
neers and students are not familiar with it. The main ideas behind FeatherstoneÕs
formulation will be explained employing a more conventional notation used by
Bae and Haug (1987).

Two contiguous elements, (iÐ1) and i, linked by joint i can be seen in Figure
8.3. It can be assumed that joint i is of revolute type. The following kinematic
relationships can be written for the rotation matrices:

A i = A i,iÐ1(u i, z i) á A iÐ1 (8.7)

for angular velocities:

wwww i = wwww iÐ1 + zi ui (8.8)

and for the velocities of the centers of gravity:

ri = r iÐ1 + wwww iÐ1 s iÐ1 + wwww i t i =

= r iÐ1 + wwww iÐ1 s iÐ1 + wwww iÐ1 + z i ui t i =

= riÐ1 + wwww iÐ1 siÐ1 + ti + zi u i t i =

= r iÐ1 + wwww iÐ1 ri Ð riÐ1 + z i u i ti

(8.9)

Equations (8.8) and (8.9) can be written together in the following matrix
form:

Y i =
ri

wwww i

 =
I r iÐ1 Ð ri

0 I

riÐ1

wwww iÐ1

 +
u i ti

ui

 zi (8.10)

or, in compact form:

Y i = B i Y iÐ1 + b i zi (8.11)

Equation (8.11) is a recursive relation between the velocities of two consecu-
tive bodies, in terms of the relative joint velocity. Matrix B i and vector bi de-
pend on the position variables. Differentiating this equation one obtains

Y i = B i Y iÐ1 + b i zi + di (8.12)

where di is a vector that groups the velocity-dependent terms

di = B i Y iÐ1 + b i zi (8.13)

8.1 Survey of Improved Dynamic Formulations 277

Now, for an N-link serial manipulator, it is possible to formulate the princi-
ple of virtual power in the form

Y i
*Tå

i=1

N

 M i Y i Ð Q i = 0 (8.14)

where

M i = m i I 0
 0 Ji

(8.15)

Q i = f i

n i Ð wwww i J i wwww i

(8.16)

and where ni and fi are the external torques and forces acting at the center of grav-
ity of link i. Vector Y i

*
 represents the virtual velocities of link i. In equation

(8.14), the virtual velocities cannot be eliminated, because they are not indepen-
dent. Only the relative velocities z are independent.

One can transform expression (8.14) and write explicitly the last two terms,

Y i
*Tå

i=1

NÐ2

 M i Y i Ð Qi +

+ YNÐ1
*T

 M NÐ1 YN-1 Ð QNÐ1 + YN
*T

 M N Y N Ð QN = 0
(8.17)

The virtual velocities must satisfy the compatibility equation (8.11).
Substituting YN

*
 and YN in equation (8.17)

Y i
*Tå

i=1

NÐ2

 M i Y i Ð Qi + YNÐ1
*T

 M NÐ1 Y NÐ1 Ð QNÐ1 +

+ YNÐ1
*T

 BN
T
 + z N

*
 bN

T
 M N BN Y NÐ1 + bN z N + dN Ð QN = 0

(8.18)

Reordering and grouping the terms yields

Y i
*Tå

i=1

NÐ2

 M i Y i Ð Qi + YNÐ1
*T

 [M NÐ1 + BN
T
 M N BN Y NÐ1 Ð

Ð QNÐ1 + BN
T
 QN Ð BN

T
 M N dN + BN

T
 M N bN zN] +

+ z N
*

 bN
T
 M N BN Y NÐ1 + bN

T
 M N bN zN + bN

T
 M N dN Ð bN

T
 QN = 0

(8.19)

The joint virtual velocity zN
*
 appears in this equation. This virtual velocity is

independent of the remaining virtual velocities; thus the parenthesis multiplying
zN

* in equation (8.19) must be zero,

bN
T
 M N BN Y NÐ1 + bN

T
 M N bN zN + bN

T
 M N dN Ð bN

T
 QN = 0 (8.20)

From this equation the independent acceleration zN can be computed as

278 8. Improved Formulations for Real-Time Dynamics

bN
T
 QN Ð bN

T
 M N BN Y NÐ1 Ð bN

T
 M N dN (8.21)

On the other hand, defining

M NÐ1 º M NÐ1 + BN
T
 (MN Ð M N bN (bN

T
 M N bN)

Ð1
 bN

T
 MN) BN (8.22)

QNÐ1 º QNÐ1 + (BN
T
 Ð BN

T
 M N bN (bN

T
 M N bN)

Ð1
 bN

T
) (QN Ð M N dN) (8.23)

Equation (8.19) can be written as

Y i
*Tå

i=1

NÐ2

 M i Y i Ð Qi + YNÐ1
*T

 M NÐ1 Y NÐ1 Ð QN = 0 (8.24)

Equation (8.24) is similar to equation (8.17) but with two important differ-
ences:

Ð There are only (NÐ1) terms.
Ð The inertia matrix and the vector of forces corresponding to link (NÐ1) have

been modified according to equations (8.22) and (8.23) in order to incorporate
the effects of link N. MNÐ1 is the articulated inertia of links (NÐ1) and N.

The process of eliminating the last element in the virtual power expression
can continue in the same manner using the recursive relations,

M iÐ1 º M iÐ1 + Bi
T

 M i Ð M i b i bi
T

 M i bi

Ð 1
 bi

T
 Mi Bi (8.25)

Q iÐ1 º Q iÐ1 + Bi
T

 Ð Bi
T

 M i b i bi
T

 M i bi

Ð 1
 bi

T
 Q i Ð M i di (8.26)

z i = bi
T

 M i bi

Ð 1
 bi

T
 Q i Ð bi

T
 M i B i Y iÐ1 Ð bi

T
 M i di (8.27)

i = N, NÐ1, ..., 2, 1

Finally, one arrives at the equation of the first link. If it is a floating link,
one can write,

Y1
*T M 1 Y 1 Ð Q 1 = 0 (8.28)

But now the virtual velocities are independent, so Y1 can be computed as,

Y 1 = M1
Ð 1 Q1 (8.29)

Summarizing: the method of articulated inertia proceeds with a triple recur-
sion in the following way:

1. Knowing the position and velocity of the base body and the joint relative po-
sitions z and velocities z, one can compute recursively forward the Cartesian
position and velocity of all the links from i=1 to i=N.

8.1 Survey of Improved Dynamic Formulations 279

branch 1

branch 2

junction body

Figure 8.4. Kinematic chain with two branches.

2. The articulated inertias M, the forces Q, and the coefficients of equation
(8.27) are then computed recursively backwards from i=N to i=1, using equa-
tions (8.25)-(8.27).

3. Finally, the acceleration of the base body is computed from equation (8.29)
and then the relative accelerations zi are computed recursively forward from
i=1 to i=N, using equation (8.27).

The Featherstone version of this algorithm is probably much more efficient
from the computational point of view. Bae, Hwang, and Haug (1988) presented
an improved version of this algorithm, using as reference point the point of the
moving body that instantaneously coincides with the origin of the inertial refer-
ence frame. Looking at the triple recursive procedure, one can see that the num-
ber of arithmetic operations grows proportionally with the number of degrees of
freedom of the open-chain; thus it is an O(N) method.

8.1.3 Extension to Branched and Closed-Chain Configurations

The ideas explained in the two previous sections can be extended to multibody
systems with any kinematic configuration. There are three main directions in
which this formulation can be generalized: a) include any kind of joints, b) ex-
tend it to multibody systems with many branches on a tree-configuration, and c)
generalize it to systems with closed loops. The extension of this formulation to
multibody systems with joints of any type is a straightforward task. It can be
found in the original references.

The consideration of branches in the kinematic chain (See Figure 8.4) is also
a simple task. Both the composite inertia and the articulated inertia methods can
be easily accommodated to include junction bodies, that is, links with more than

280 8. Improved Formulations for Real-Time Dynamics

Figure 8.5. Cut-joint method to open a closed-chain multibody system.

two joints. In the junction bodies, remember that the forward recursive computa-
tions must be split into two separate procedures that move independently along
each branch. In the backward recursive computations, the two separate procedures
along each branch meet at the junction body and yield a single procedure. From
the theoretical point of view, the formulation can be extended to include tree-
structured multibody systems without difficulty. The main difficulties arise in
the practical implementation, when one tries to compute in parallel terms corre-
sponding to different branches, since it is necessary to set up synchronization
points at the junction bodies.

More difficulties can be found when the above formulations are modified to
tackle closed-chain multibody systems. These can be transformed into open-chain
systems through the cut-joint method which eliminates or cuts a joint in each
loop, as seen in Figure 8.5. This method is described by Bae et al. (1987-88,
1988).

Where a joint is removed, the corresponding constraint forces, formulated
through the Lagrange multipliers method as (FFFF q

T llll) and (Ð FFFF q
Tllll) on both links,

can be propagated backwards on both branches just as equation (8.23) indicates.
All joint accelerations in the loop, given by equation (8.27), depend on the
Lagrange multipliers vector llll.

In order to have enough equations to compute the relative accelerations z and
the Lagrange multipliers llll, it is necessary to differentiate twice the constraint
equations corresponding to the cut joint.

Initially, these constraints are formulated using the Cartesian coordinates of
the adjacent bodies. One must to substitute backwards on both branches the
Cartesian velocities and accelerations by the corresponding relative variables us-
ing equations (8.11) and (8.12). Finally, as many equations as unknowns are
available, and the details of this fully recursive formulation are described in Bae
and Haug (1987-88). In a later work Bae, Hwang, and Haug (1988) introduced a
modification addressed to compute all the relative accelerations z at once by solv-
ing a system of linear equations; thus becoming an O(N3) method. More re-
cently, Garc�a de Jal�n et al. (1989) and Bae and Won (1990) presented other

8.1 Survey of Improved Dynamic Formulations 281

formulations better suited for real time analysis, which are based on velocity
transformations (Jerkovsky (1978), Kim and Vanderploeg (1986)).

The recursive methods, so eagerly accepted at the beginning, have been
steadily losing ground and interest in favor of the methods based on velocity
transformations which seem simpler to formulate and easier to parallelize.

8.2 Velocity Transformations for Open-Chain Systems

Some of the most efficient formulations for the forward dynamic analysis that
have been developed in the last decade have been dealt with in the preceding sec-
tions. These methods were classified, according to the number of floating-point
operations that they require, as methods of order O(N) or O(N3). Although there
are important theoretical and practical differences among them, there are also
common aspects that are worth pointing out.

The first point in common is their origin. These formulations arose from the
study of the dynamics of serial robots, were posteriorly extended to other more
general open-chain and tree-type multibody systems, and to those with a closed
chain configuration. Therefore, the topology of the multibody system has played
a key role in the development history of these recursive formulations. This is a
point to be contrasted with kinematic and dynamic methods exposed in Chapters
3 and 5 which can be really considered as configuration independent.

The second point in common between the O(N) and O(N3) families is the ex-
tensive use, with a different emphasis, that those methods make of the concept
of recursion along the kinematic chain. The recursive formulations have meant
an important contribution to the dynamics of robots in particular, and to the dy-
namics of multibody systems in general, since they have substantially reduced
the number of required floating-point operations. This does not mean that they
do not suffer from some limitations that make the other non-recursive formula-
tions compete advantageously against them.

From a computational viewpoint, vectorization has an enormous importance
in the solution of large computational problems with thousands of degrees of
freedom, such as those arising in fluid and solid mechanics. It may not influence
the analysis of multibody systems very much, because these problems lead to
systems of equations of small or moderate size. Parallelization, however, may
have a very important effect in the dynamics of multibody systems, provided the
dynamic method is such that different parts of the computational process may be
executed simultaneously.

A general and simple method that formulates the dynamic equations of any
open- or closed-chain multibody system, and which can be parallelized even to
the body (or element) level will be studied in this and the next sections. This
formulation is based upon the velocity transformations considered in Section
5.3.

The general purpose dynamic formulations described in Sections 5.1 and 5.2,
are simple and may be applied to any multibody system regardless of their con-

282 8. Improved Formulations for Real-Time Dynamics

Figure 8.6. Open-chain multibody system with tree structure.

figuration. They treat all systems in the same way, regardless of their topology
and particular characteristics which make those methods insufficiently efficient
for real time applications. A way to improve the efficiency of these formulations
is to take advantage of the open-chain configurations that the multibody systems
may have, or in which they may be transformed.

Open-chain multibody systems are less constrained than the closed-chain
ones. This is a fact that when conveniently considered can be used to improve
the efficiency of the dynamic formulation. Open-chain multibody systems are
not only frequently found in robotics, aerospace, and biomechanics, but in any
closed-chain multibody system that may also be transformed into an open-chain
configuration by simply opening its loops (removing certain constraint equations,
which can be considered separately). Consequently, all the benefits that may be
drawn from the formulation of open-chain systems can be posteriorly extended to
closed kinematic chains as well. The study of the open-chain multibody systems
is next.

8.2.1 Dependent and Independent Coordinates

An open-chain multibody system will be considered that consists of one or sev-
eral branches, forming a tree structure and connected to a base element, as
shown in Figure 8.6. The total number of degrees of freedom f (or independent
coordinates) will be equal to the six degrees of freedom of the base body plus all
the relative degrees of freedom allowed by the kinematic joints along the
branches of the multibody system. In order to be consistent with the
formulations previously written in this book, the vector of independent
coordinates will be denoted as z. This vector can be composed for instance of the
three translations and three rotations of the base body, the rotations of the
revolute joints, the translations of the prismatic joints the two rotations of an
universal joint, and so forth. The vector z, thus formed and its derivatives, will

8.2 Velocity Transformations for Open-Chain Systems 283

1

2

3

45

6

7

8
9

0z1

z2

z3

z4

z5

z6

z7

z8

z9

Figure 8.7. Planar system with floating base body and two robot arms.

completely and univocally define the position and motion of the open-chain
system.

It is also possible to describe the motion of the open-chain multibody system
by means of an augmented set of coordinates q with n components, where n>f.
These coordinates will no longer be independent, but interrelated through (nÐf)
constraint equations of the form:

FFFF(q) = 0 (8.30)

where it has been assumed, without important loss of generality, that the con-
straints are scleronomous.

Whereas there is a natural choice for the independent coordinates z (degrees
of freedom of the base body plus the relative coordinates at the joints), the choice
of dependent coordinates q is not so restrictive. One may make a choice from
among the different sets of dependent coordinates based on convenience of im-
plementation or even on personal preference. The following example clarifies
this point.

Example 8.1

Figure 8.7 illustrates a planar multibody system with a base element that can move
freely and to which two robots with three degrees of freedom each are attached.
Therefore, there is a total number of nine degrees of freedom, corresponding to the
independent coordinates z1 to z9. Among the many possible sets of dependent co-
ordinates, the following set q of natural coordinates can be chosen,

284 8. Improved Formulations for Real-Time Dynamics

qT = {r1
T, r2

T, r3
T, r4

T, r5
T, r6

T, r7
T, r8

T, r9
T}

where ri
T={x i,y i}. These 18 Cartesian coordinates will be interrelated by means of

nine constraint conditions, that the reader may formulate as an exercise following
the rules given in Chapter 2.

Another possibility is to form a vector of dependent coordinates q composed of
the previous set plus the coordinates of the center of gravity of the base body,
those that describe its orientation, and the relative coordinates of the joints. Thus,
the following set of 27 mixed coordinates is obtained,

qT = {r0
T, z3, r1

T, z4, r2
T, z7, r3

T, z5, r4
T, z6, r5

T, r6
T, r7

T, z8, r8
T, z9, r9

T}

which will require 18 constraint equations.
A third possibility is to form q from the reference point coordinates of all the

elements, including the coordinates of the center of gravity and the angular orien-
tation of each element with respect to the inertial frame, which will lead to the fol-
lowing 21 dependent coordinates

qT = {g1
T, j 1, g 2

T, j2, g 3
T, j3, g 4

T, j4, g 5
T, j5, g 6

T, j6, g 7
T, j7}

where g i
T={gix, giy} is the position vector of the center of gravity of body (i).

These coordinates can also be augmented by the addition of all or part of the rela-
tive coordinates at the kinematic pairs.

The last possibility is to form a vector q that includes all the available infor-
mation in terms of the position of the basic points, position of the center of grav-
ity, and the rotation matrix that relates the orientation of the element with respect
to the inertial frame. Accordingly,

qT = {r1
T, r2

T, g 1
T, A 1, r3

T, g 2
T, A 2, r4

T, g 3
T, A 3,}

where ri is the position vector of the point i, and gj and A j contain respectively
the coordinates of the center of gravity and the rotation matrix of element (j). As
above, this vector q can be augmented by the relative coordinates of the joints and
by the Cartesian components of the unit vectors in the case of three-dimensional
multibody systems.

It has been seen in the previous example that there are many different sets of
dependent coordinates that can conveniently represent the position of open-chain
multibody systems. One should choose the most favorable one from the view-
point of practical implementation, and the velocity and acceleration vectors need
not be the derivatives, term by term, of the dependent position coordinates. For
example, for the dependent position coordinates for a rigid body, one can chose
those of the center of gravity and the Euler angles. As dependent velocities, one
can chose those of the center of gravity plus the vector of angular velocities wwww,
which is not obtained through the direct differentiation of the Euler angles. The
Euler angles could be replaced by the Euler parameters or by the nine compo-
nents of the rotation matrix. They would still use as dependent velocities those
of the center of gravity and the vector of angular velocities wwww.

The reason for this peculiar choice comes from the non-integrability of the
vector of angular velocities wwww. One is forced to look for other sets of position
variables (obviously more complicated than wwww) that will enable representation of

8.2 Velocity Transformations for Open-Chain Systems 285

the angular orientation. In order to take into account the different character be-
tween the position vector and the velocity or acceleration vectors, we introduce
the following notation: q will represent the vector of position dependent coordi-
nates; whereas q and q will represent the dependent velocity and acceleration vec-
tors. Accordingly, the following relations will hold:

q ¹ q (8.31)

q = V(q) q (8.32)

q = U(q) q (8.33)

where V(q) is a position-dependent matrix that transforms the derivatives of the
position vector q into the velocities q. The matrix U(q) represents the velocity
inverse transformation between q and q.

8.2.2 Dependent and Independent Velocities: Matrix R

The velocity transformations introduced in Chapters 3 and 5 will now be
considered, The corresponding equations will be rewritten here for convenience
as,

q = R(q) z + Sb(q) (8.34)

q = R(q) z + Sc (q, q) (8.35)

where the dependency of the matrix R and the terms (Sb) and (Sc) on q has been
explicitly indicated in (8.34) and (8.35). The term (Sb) will be zero if the con-
straints are scleronomous.

The columns of the matrix R constitute a basis for the vector space of all the
possible velocity vectors q. Any vector q that satisfies the velocity constraint
equations may be expressed as a linear combination of the f columns of the ma-
trix R. As shown in equation (8.34), the components of the vector z of indepen-
dent velocities are the coefficients of such linear combination.

Equation (8.34) also indicates the physical significance of the columns of the
matrix R. Column i represents the dependent velocities q obtained by giving a
unit value to the component zi of the vector z, and zero to the rest of the compo-
nents. Thus,

ri = q zi = 1 and zj = 0 for j¹i
(8.36)

where ri represents the column i of the matrix R, as compared with ri which rep-
resents the position vector of point i.

The definition made in equation (8.36) of the columns of the matrix R leads
for the general case of open- and closed-chain multibody systems, to the methods
explained in Chapter 5, such as the LU factorization of the Jacobian FFFF q,

286 8. Improved Formulations for Real-Time Dynamics

Singular Value decomposition, and so forth. In the particular case of open-chain
multibody systems that are represented by the independent coordinates mentioned
above, the columns of the matrix R can be obtained directly through velocity
computations, without the need of forming and factoring the Jacobian matrix;
thus leading to a greatly reduced numerical effort. In addition, the following ad-
vantages can also be obtained:

a) The sparsity pattern of the matrix R becomes apparent and can be used in
subsequent matrix operations.

b) The part of the matrix R that affects a particular link or element of the
multibody system can be formed independently of the rest of the elements.
This property leads to an element-by-element treatment of the equations of
motion.

These advantages become apparent when considering the physical significance
of each of the columns of the matrix R. Column i represents the dependent ve-
locities resulting from a unit value of the independent velocity zi and zero values
of the rest of independent velocities. Taking into account that vector z contains
the position coordinates of the base body plus the relative joint coordinates, three
possibilities can be considered:

1) zi corresponds to a translational velocity of the base body along one of the in-
ertial axis. All the elements of the multibody system will have a unit transla-
tional velocity along the same inertial axis. Only the Cartesian coordinates of
the basic points will be affected by this translation. The rest of the dependent
velocities including unit vectors and relative joint coordinates will take zero
values.

2) zi corresponds to a rotational velocity of the base body along one of the iner-
tial axis. The corresponding column of the matrix R will contain the rotation
velocities of all the points and unit vectors about an axis parallel to the iner-
tial one. This axis goes through the reference point of the base body.

3) zi corresponds to the relative velocity of one of the kinematic joints. Only the
distal elements (those after the corresponding joint) of the kinematic chain
will be affected by the relative joint velocity.

The following example will make use of these considerations to show the
ease by which the different columns of the matrix R can be calculated in an
open-chain multibody system, when the proposed sets of coordinates are used.

Example 8.2

Consider the open-chain multibody system illustrated in Figure 8.7 which is repre-
sented by a set of mixed coordinates. Derive the columns of the matrix R that cor-
respond to the following independent velocities: z1, z3, and z7.

The vector of dependent mixed coordinates is, in this case,

qT = {r0
T, z3, r1

T, z4, r3
T, z5, r4

T, r5
T, z6, r6

T, r2
T, z7, r7

T, z8, r8
T, z9, r9

T}

8.2 Velocity Transformations for Open-Chain Systems 287

where ri is the position vector of point i, and zj represents the relative coordi-
nates.
a) When z1=1, all the points will have the same velocity n1

T= 1,0 , and the rela-
tive coordinates will have zero velocity. Accordingly,

r1T = {n1
T, 0, n 1

T, 0, n 1
T, 0, n 1

T, n 1
T, 0, n 1

T, n 1
T, 0, n 1

T, 0, n 1
T, 0, n 1

T}

b) When z3 = 1 (unit rotation of the base element), each point will have the fol-
lowing velocity: v i=ri=kÙ(riÐr0), where k is the unit vector perpendicular to the
plane of the multibody system. Therefore

r3T = {0T, 1, v 1
T, 0, v 3

T, 0, v 4
T, v 5

T, 0, v 6
T, v 2

T, 0, v 7
T, 0, v 8

T, 0, v 9
T}

c) Finally, if a unit relative velocity is introduced in the joint 7, z7 = 1, only those
points that belong to the distal elements after joint 7 will have a non-zero veloc-
ity, which will have the following value: v i=ri=kÙ(riÐr2), (i=7,8 ,9) .
Consequently, the seventh column of R becomes

r7T = {0T, 0, 0T, 0, 0T, 0, 0T, 0T, 0, 0T, 0T, 1, v 7
T, 0, v 8

T, 0, v 9
T}

d) In order to complete this example, the part of the matrix R that corresponds to
the element that joins the points 3 and 4 will be calculated separately. This part of
the matrix R is composed of the columns that correspond to the degrees of freedom
of the base element (z1, z2, z3) and those of the joints (z4, z5) that are before the el-
ement within the same kinematic chain. The result for the element is

 z1 z2 z3 z4 z5

R3-4 =

1
0
1
0

0
1
0
1

k Ù (r3 Ð r0)

k Ù (r4 Ð r0)

k Ù (r3 Ð r1)

k Ù (r4 Ð r1)
 0

k Ù (r4 Ð r3)

The previous example clearly illustrates two very important advantages of
this method: a) the way in which the matrix R can be calculated is direct, sys-
tematic, and general; and, b) the procedure can be carried out for each body inde-
pendently in a body-by-body or element-by-element basis (rather than recur-
sively). Therefore, the method can take full advantage of parallel computer archi-
tectures.

Finally, the columns of matrix R, thus calculated, constitute a basis for the
nullspace (subspace of possible motions) of the Jacobian matrix FFFF q. Although
the constraint equations are not explicitly calculated, the following relation will
always hold:

FFFF q R = 0 (8.37)

288 8. Improved Formulations for Real-Time Dynamics

Table 8.1. Algorithm to formulate and integrate the equations of motion of an open-
chain system.

Step Data Result Mode

1 z q recursive

2 q R e-by-e or rec.

3 z , q q recursive

4 z , q , q (Sc) e-by-e

5 R , M RT M R e-by-e

6 R , Q RT Q e-by-e

7 R , Sc, M RT M Sc e-by-e

8 Linear equations z global

9 (z, z)t (z, z)t+Dt global

10 GO TO 1

8.2.3 Equations of Motion

Once the matrix R is known, the methods presented in Chapter 5 for the formu-
lation of the equations of motion in independent coordinates can be used. We
will use equation (5.67) that is written again for convenience as:

RT M R z = RT Q Ð RT M S c (8.38)

where Q is the vector containing the external forces, those coming from a poten-
tial and the velocity-dependent ones. The term (Sc) contains the dependent accel-
erations q that are calculated from the true velocities q by equating to zero the
independent accelerations z in equation (5.65).

The algorithm that allows the formulation and numerical integration of the
motion differential equations of an open-chain system, according to the proposed
method and to equation (8.38), is given in detail in Table 8.1. The integration is
carried out in independent coordinates; and therefore no constraint violation stabi-
lization is considered. Table 8.1 also indicates the way each step can be calcu-
lated in an optimal way. Some steps can be carried out in an element-by-
element basis; thus susceptible for being parallelized. Other steps are carried out
recursively, and others in a global manner.

The steps included in Table 8.1 will be described more in detail, starting from
the position problem.

8.2 Velocity Transformations for Open-Chain Systems 289

k1

l1

J

K

L

j1

j2

j3

Figure 8.8. Body with one input point and two output points.

J

Kj1

gj
j2

uj

djk k1

uk

Figure 8.9. Model of a generalized joint.

8.2.4 Position Problem

A recursive solution to the position problem of a spatial open-chain multibody
system will be shown in this section. We assume that the multibody system is
composed of a base element and a series of branches with arbitrary size and dis-
tribution composed of rigid bodies interconnected by any of the following joints:
revolute (R), prismatic (P), cylindrical (C), universal (U), or spherical (S). The
formulation can also be extended without difficulty to other types of joints.

The position problem, required in Table 8.1, consists in finding the dependent
coordinates q that define the position of the individual elements of the multibody
system from the independent coordinates z, composed of the degrees of freedom
of the base body plus the joint coordinates. Later on, in order to avoid possible
singular positions, dependent angular orientation coordinates will be included for
the base body and for the spherical joints. The vector of dependent coordinates q
includes the natural coordinates of the elements plus the following additional
variables:

290 8. Improved Formulations for Real-Time Dynamics

Ð Cartesian coordinates of the points ri referred to the inertial frame.
Ð Cartesian components of the unit vectors ui referred to the inertial frame.
Ð Rotation matrices Ai, that relate the current position of every element with

respect to a known reference or initial position.
Ð Cartesian components of the center of gravity gi of each body expressed in the

inertial frame.

The aim of this section is to calculate the components of the position vector
q in a recursive manner (avoiding the expensive Newton-Raphson iterations de-
scribed in Chapter 3), starting from the base body and moving forward towards
the distal elements in the different branches. We will assume that the vector q0

with the initial or reference positions is known.
Figure 8.8 shows a general element J that has an input point j1, whose posi-

tion is already known, and one or more output points j2, j3, and so forth. These
output joints are related to the pairs that join the element J with the posterior el-
ements in the chain. Figure 8.9 illustrates the model of the generalized joint
that joins elements J and K. The points j2 and k1 are the output point of element
J and input point of K, respectively. The vectors uj and uk belong to J and K, re-
spectively, and must be chosen according to the type of the kinematic pair that
joins both elements. The relative degrees of freedom allowed by this joint will
be represented by a vector of relative joint coordinates zjk. The vector djk corre-
sponds to the position vector between points j2 and k1.

Assuming that the position vector rj1 and rotation matrix Aj corresponding to
the element J are known, the solution of the position problem gives the remain-
ing position variables of J (such as the center of gravity gj, output point rj2 and
unit vector uj), plus the input position variables of element K (position vector
rk1 and rotation matrix Ak). The necessary calculations are represented schemati-
cally in Figure 8.10. The corresponding analytical expressions are:

g j = rj1 + A j (g j
o Ð rj1

o) (8.39)

u j = A j u j
o (8.40)

rk1 = rj1 + A j (rj2
o Ð rj1

o) + d jk (8.41)

A k = A jk z jk A j (8.42)

where the superscript (-)o refers to the corresponding variable to the known ini-
tial or reference position defined in the inertial frame. The matrix Ajk(zjk) is the
relative rotation matrix of the kinematic joint between elements J and K that de-
pends on the relative rotation. Note that equations (8.39) to (8.42) apply to any
output variable and joint of the element J.

Equations (8.39) through (8.42) will be particularized to each of the different
joints.

8.2 Velocity Transformations for Open-Chain Systems 291

r j1

Aj

gj

rj2

uj

uK

r k1

Ak

zjk zjk

Figure 8.10. Scheme of recursive position calculations.

Revolute Joint R. Equations (8.41) and (8.42) become in this case:

djk = 0 (8.43)

A jk = A(z jk, u j) (8.44)

where zjk is the angle rotated by the joint with respect to the reference configura-
tion q0, and uj is the unit vector in the direction of the joint axis. The rotation
matrix in (8.44) is defined in terms of the angular rotation zjk about the axis de-
fined by the unit vector uj. It can be demonstrated (See Argyris (1982)) that

A zjk, u = I + u u 1 Ð cos zjk + u sin zjk (8.45)

where u is the skew-symmetric matrix commonly used to perform the cross
product of vectors.

Prismatic Joint P. Considering that the vectors uj and djk have the direction of
the relative translation allowed by the prismatic joint, the following equations
describe the relative configuration of the elements:

djk = zjk uj (8.46)

A k = A j (8.47)

Cylindrical Joint C. The vectors uj and djk are considered to have the direction
of the joint axis. Consequently,

djk = zjk
t u j (8.48)

A k = A jk zjk
r , u j A j (8.49)

where zjk
r and zjk

t are the relative coordinates that represent the rotation and transla-
tion of the joint, respectively.

Spherical Joint S. The spherical joint allows an arbitrary rotation that may be
defined either by the Euler angles, the Bryant angles, or the Euler parameters p
which are interrelated by the following condition p0

2+p1
2+p2

2+p3
2 = 1. Equations

(8.48) and (8.49) become:

292 8. Improved Formulations for Real-Time Dynamics

djk = 0 (8.50)

A k = A jk z jk º p á A j (8.51)

The rotation matrix in terms of the Euler parameters is defined as (Nikravesh
(1988) and Haug (1989))

A p = 2 eo
2 Ð 1 I3 + 2 e e T + eo e (8.52)

where eo=po, and e T=(p1, p2, p3).

Universal Joint U. This joint allows two rotations zjk
1 and zjk

2 with respect to
two perpendicular axes along the unit vectors uj and uk. The axes intersect at the
common point between both bodies J and K. The equations that correspond to
this joint become

djk = 0 (8.53)

u j = A j u j
o (8.54)

u k = A jk
1 zjk

1 , u j A j u k
o (8.55)

A k = A jk
2 zjk

2 , u k A jk
1 zjk

1 , u j A j (8.56)

Base body. Let the independent coordinate vector of the base element zb be de-
fined by the coordinates of a reference point i and by the Euler parameters.
Consequently,

z b
T º DDDDri

T p T (8.57)

and the following two relations will hold for the reference point and rotation ma-
trix:

ri = ri
o + DDDDri (8.58)

A = A(p) (8.59)

Equations (8.39) to (8.59) allow one to solve recursively the position prob-
lem for a wide range of open-chain multibody systems.

8.2.5 Velocity and Acceleration Problems

A recursive process addressed to obtain the dependent velocity and acceleration
vectors of a multibody system can be similar and even simpler than that used in
the preceding section to solve the position problem.

8.2 Velocity Transformations for Open-Chain Systems 293

J

K

uj

j2
djk k1

uk1

uk2
k2

Figure 8.11. Consecutive bodies for recursive velocity calculation (Form. A)

It is possible and even convenient to use a set of dependent velocities and ac-
celerations that does not correspond to the derivatives of the dependent position
vector q. It has been shown in the previous section that the vector q may be
composed of the Cartesian components of basic points, those of the centers of
gravity, and the components of unit vectors and the rotation matrices. Two dif-
ferent sets of dependent velocities and accelerations will be considered, that will
lead to the following formulations:

a) Formulation A, based on the Cartesian components of basic points and unit
vectors. This formulation follows the concept of natural coordinates so much
used throughout this book. If an element is defined by two basic points and
two unit vectors the corresponding mass matrix is constant and no velocity-
dependent inertia terms are involved in the forcing function. It is possible to
take advantage of these important facts at the time of implementing the algo-
rithm of Table 8.1.

b) Formulation B, based on the reference point coordinates. This formulation
uses the velocity and acceleration vectors of the center of gravity and the an-
gular velocity and acceleration vectors of each element. This leads to some
important advantages at the time of calculating the matrix R in an element-
by-element basis, because contrary to the Formulation A, there are no vari-
ables shared by the different elements. These advantages materialize in an ease
of parallelization and in computational savings.

The analytical expressions necessary to calculate the dependent velocities and
accelerations in both formulations will be described next.

8.2.5.1 Formulation A

In this case, it is necessary to compute the velocities of the basic points and unit
vectors. Figure 8.11 illustrates two consecutive elements J and K whose posi-
tions are known. In addition, it will be assumed that the velocity of J, as well as
the relative velocity of the joint zjk, are also known.

294 8. Improved Formulations for Real-Time Dynamics

The aim is to compute the velocity of the basic points k1 and k2, and those
of the unit vectors uk1 and uk2. These are given by the following velocity equa-
tions:

rk1 = rj2 + d jk (8.60)

wwww k = wwww j + wwww jk (8.61)

rk2 = rk 1 + wwww k Ù (rk2 Ð rk1) (8.62)

u k1 = wwww k Ù u k 1 (8.63)

u k2 = wwww k Ù u k 2 (8.64)

Similarly, the accelerations can be obtained from the following equations:

rk1 = rj2 + d jk (8.65)

wwww k = wwww j + wwww kj (8.66)

rk2 = rk 1 + wwww k Ù (rk2 Ð rk1) + wwww k Ù (wwww k Ù (rk2 Ð rk1)) (8.67)

u k1 = wwww k Ù u k 1 + wwww k Ù (wwww k Ù u k1) (8.68)

u k2 = wwww k Ù u k 2 + wwww k Ù (wwww k Ù u k2) (8.69)

These equations will now be particularized to the different types of kinematic
joints.

Revolute joint R. In this case, k1 coincides with j2, and the unit vector uk1 co-
incides with uj and the joint axis. Consequently, the following expressions can
be easily obtained:

djk = d jk = d jk = 0 (8.70)

wwww jk = zjk uj (8.71)

wwww jk = zjk u j + zjk wwww j Ù u j (8.72)

Prismatic joint P. This joint can be modeled by considering uk1 º uj in the di-
rection of the joint which is defined by the points j2 and k1. After this considera-
tion, the following equations define the required velocities and accelerations:

8.2 Velocity Transformations for Open-Chain Systems 295

djk = zjku j + zjkwwww j Ù uj (8.73)

wwww jk = wwww jk = 0 (8.74)

djk = zjk uj + 2zjk wwww j Ù uj + zjk wwww j Ù uj + zjk wwww j Ù wwww j Ù uj (8.75)

Cylindrical joint C. This joint can be considered as a combination of a revolute
and a prismatic joint. Therefore the following equations yield the required veloci-
ties and accelerations:

djk = zjk uj + zjk
t wwww j Ù uj (8.76)

wwww jk = zjk
r
 uj (8.77)

djk = zjk
t
 uj + 2zjk

t
 wwww j Ù uj + zjk

t wwww j Ù uj + zjk
t wwww j Ù wwww j Ù uj (8.78)

wwww jk = zjk
t
 uj + zjk

t
 wwww j Ù uj (8.79)

Spherical joint S. This joint can be modeled by joining points j2 and k1 in the
system of Figure 8.11. The relative velocities and accelerations of the joint will
be defined by the first and second derivatives of the Euler parameters. This is not
strictly necessary for the accelerations, since wwww is integrable. The expressions
that define the motion of the joint are (Nikravesh (1988) and Haug (1989)):

djk = djk = 0 (8.80)

wwww jk = 2 G p (8.81)

G º
Ðp1 p0 Ðp3 p2

Ðp2 p3 p0 Ðp1

Ðp3 Ðp2 p1 p0

(8.82)

wwww jk = 2 G p (8.83)

Universal joint U. The points j2 and k1 that belong to this joint are joined to-
gether, and the unit vectors uj and uk1 that belong to elements J and K, respec-
tively, are perpendicular to each other. The axes of the two relative rotations zjk

1

and zjk
2, are uj and uk1, respectively. The equations that define the motion of the

joint become:

djk = djk = 0 (8.84)

296 8. Improved Formulations for Real-Time Dynamics

J

K

uj

gj
j2

djk k1
gk

uk1

Figure 8.12. Consecutive bodies for recursive velocity calculation (Form. B)

uk1 = wwww j + zjk
1
 uj Ù uk1 (8.85)

wwww k = wwww j + zjk
1
 uj + zjk

2
 uk1 (8.86)

wwww k = wwww j + zjk
1
 uj + zjk

2
 uk1 + zjk

1
 u j + zjk

2
 uk1 (8.87)

8.2.5.2 Formulation B

The main difference between this formulation and the previous one is the kind of
dependent variables used to derive the equations of motion. In this formulation,
the velocity of the center of gravity and the angular velocity of each body are
taken as velocity variables instead of the velocities of points and unit vectors
that were used in Formulation A. Using these variables, one can obtain a similar
expression of the equations of motion as the one presented in equation (8.38).
However, the mass matrix is of size (6x6) with the following expression:

M = m I3 0

0 A i JiA i
T

(8.88)

An additional term appears in the right-hand side of equation (8.38), to ac-
count for the centrifugal terms giving RT(QÐC) instead of RTQ alone.

Consider the general joint of Figure 8.12. The following data is assumed
known:

Ð the position of all the points and the unit vectors,
Ð the velocity g j and acceleration g j of the center of gravity of body J,

Ð the angular velocity wwwwj and acceleration wwww j of body J, and,

Ð the relative velocities zjk and accelerations zjk of the joint that links bodies J
and K.

8.2 Velocity Transformations for Open-Chain Systems 297

The velocities of the output points of body J and the input point of body K
will be given by:

rj2 = g j + wwww j Ù rj2 Ð g j (8.89)

u j = wwww j Ù u j (8.90)

rk1 = rj2 + d jk (8.91)

wwww k = wwww j + wwww kj (8.92)

u k1 = wwww k Ù u k 1 (8.93)

g k = rk 1 + wwww k Ù g k Ð rk 1 (8.94)

The accelerations will be given by:

r j2 = g j + wwww j Ù rj2 Ð g j + wwww j Ù wwww j Ù rj2 Ð g j (8.95)

wwww k = wwww j + wwww kj (8.96)

rk1 = rj2 + djk (8.97)

g k = rk 1 + wwww k Ù g k Ð rk 1 + wwww k Ù wwww k Ù g k Ð rk 1 (8.98)

In equations (8.89)-(8.98), the particular values of the variables that define the
relative motion of each kind of joint are given by the same equations developed
for the Formulation A: equations (8.70) to (8.87).

8.2.6 Element-by-Element Computation of Matrix R

The matrix R may be obtained globally (for all the multibody system) or in an
element-by-element basis. Each column of matrix R represents the result of ve-
locity analysis, in which one computes the dependent velocities corresponding to
a unit relative independent velocity (rigid body motion of the base body or rela-
tive joint velocity). On the other hand, one may consider separately the rows of
matrix R that correspond to the dependent velocities of a particular body. In
these rows, only the columns corresponding to the independent velocities that af-
fect this body, that is, base body velocities and relative velocities in joints that
are located backward in the branch of the body, will contain non-zero elements.
This presents very good opportunities for carrying out the computations in paral-
lel.

298 8. Improved Formulations for Real-Time Dynamics

0 1

2

3 4

5

6

7

1

2
3 4

5

6

7

Figure 8.13. Open-chain system with two branches and seven bodies.

Since R is a transformation matrix from independent to dependent velocities,
R may be obtained by either one of the two Formulations A or B, seen in the
previous section. The topic of how to obtain R using velocity analysis should
not present any conceptual difficulty. Formulation B, which seems to be the
most efficient method, will be dealt with here. The basic ideas of how to obtain
the matrix R using Formulation A will be treated through some exercises.

In Section 8.2.2, the physical meaning of the velocity transformation matrix
R of order (6nb´f) was explained. In this section, a procedure for the fast parallel
computation of matrix R will be presented. Recall from Section 8.2.5 that in
the Formulation B, the i-th column of matrix R represents the velocity of the
center of gravity and the angular velocity of all bodies, that is vector q, when all
the relative joint velocities z are zero except the i-th component that takes a unit
value. Consequently, the columns of matrix R can be computed, one at a time,
by solving f times the velocity problem. The parallelization of the algorithm be-
comes easier, if an element-by-element computational scheme is adopted. This
scheme is based on computing ÔseparatelyÕ the rows of R corresponding to each
body. In this way, most of the computations can be carried out independently for
each body and can be computed concurrently.

Example 8.3

Consider the example in Figure 8.13, with seven elements or rigid bodies forming
an open-chain with two branches. It is assumed that all the joints have a single
degree of freedom, and that the base body is fixed.

In this example, the size of matrix R is of (42´7). Suppose that it is necessary
to compute the rows of R corresponding to body 5. First of all, columns 3, 4, 6,
and 7 will be zero, because the unit velocities of joints 3, 4, 6 and 7 will not pro-
duce motion in the bodies that are backward in the kinematic chain. Hence, label-
ing R5 as the six rows-matrix R corresponding to body 5, omitting the zero
columns, one can write it as

R5 = R 5
1 R 5

2 R 5
5

8.2 Velocity Transformations for Open-Chain Systems 299

where R5
i represents a (6´1) vector obtained by extracting from R the rows of col-

umn i that correspond to body 5. Therefore, matrix R5 is of (6´3) size. The number
of columns of Rj in the general case coincides with the number of degrees of free-
dom found in the path from body J to the base body. Vector R5

i can be written in
the following form:

R5
i = g 5

i

wwww5
i

where g5
i and wwww5

i are, respectively, the velocity of the center of gravity and the an-
gular velocity of body 5, when all the joint relative velocities are zero, except the
i-th component, which has unit relative velocity.

Generally, the rows of matrix R corresponding to body b are contained in ma-
trix Rb. The size of matrix Rb is (6´fb), where fb is the number of degrees of
freedom found in the path that goes from body b to the base body including the
base body degrees of freedom. Matrix Rb can be written in the following way:

R b = R b
1 R b

2 R b
pb (8.99)

where pb is the number of joints in the path from body b to the base body.
Subscripts are used for bodies and superscripts for joints. Each submatrix Rb

i is
of size (6´di), where di is the number of degrees of freedom of joint i. In the ex-
ample of Figure 8.13, di takes unit value for all the joints, since all of them
were assumed to allow a single degree of freedom.

The computation of matrices Rb
i for the different types of joints are presented

below:

Revolute joint R. Since a revolute joint allows a single degree of freedom, di=1
in this case. Labeling ui to the unit vector that points in direction of the revolute
axis, Rb

i is calculated as

Rb
i =

u i Ù g b Ð ri

ui

(8.100)

where (gbÐ ri) is the vector that goes from the revolute joint i to the center of
gravity of body b.

Prismatic joint P. Again di=1. Using the same notation, one can obtain

Rb
i = u i

0
(8.101)

Cylindrical joint C. Since a cylindrical joint allows two degrees of freedom,
di=2; and hence Rb

i has two columns, that can be written as follows:

Rb
i
 =

u i Ù (gb Ð ri) u i

ui 0
(8.102)

300 8. Improved Formulations for Real-Time Dynamics

Spherical joint S. In this case, di=3. Since the relative angular velocity vector is
taken as relative joint velocity, the expression of Rb

i is

Rb
i
 =

i Ù (gb Ð ri) j Ù (gb Ð ri) k Ù (gb Ð ri)

 i j k
(8.103)

where i, j, and k are three orthonormal unit vectors parallel to the inertial axes.

Universal joint U. As the cylindrical joint, the universal joint has di=2. Vectors
ui1 and ui2

 to the two orthogonal unit vectors that point in the directions of the
axes. Hence,

Rb
i
 =

u i1 Ù (gb Ð ri) u i2 Ù (gb Ð ri)
u i1 u i2

(8.104)

Base body. An unconstrained floating base body has six rigid body degrees of
freedom; thus di=6. As in the spherical joint, the rotational part of matrix R is
defined from three unit angular velocities in the directions of the inertial axes.
Vector gb

i
 is the vector that goes from the center of gravity of the base body

(reference point) to the center of gravity of body b. Matrix Rb
i is thus calculated

in the following way:

Rb
i = i j k i Ù g b j Ù g b k Ù g b

0 0 0 i j k
(8.105)

where columns one to three correspond to the translational degrees of freedom,
and columns four to six to the rotational ones.

The procedure described in this section for the computation of matrix R
works independently for each of the bodies. Thus, matrices Rb can be computed
concurrently.

8.2.7 Computation of Mass Matrices Mb

As it can be seen in Nikravesh (1988) and Haug (1989), with reference point co-
ordinates the multibody mass matrix M can be obtained by assembling the body
mass matrices Mb. It is not necessary to obtain explicitly matrix M, but only to
compute Mb and perform the required product with matrix Rb.

The body mass matrix Mb is a (6´6) matrix formed by two (3´3) subma-
trices on its diagonal. The leading (3´3) submatrix is the unit matrix I times the
mass of the element. The second (3´3) submatrix Jb, which represents the
inertia tensor of body b expressed in the inertial reference frame, requires further
computation because it is position dependent. Using the well-known tensor
transformation expression between two reference frames, one can obtain

Jb = A b Jb A b
T (8.106)

8.2 Velocity Transformations for Open-Chain Systems 301

RMR
T

=

42

7

=

Figure 8.14. Non-zero pattern for the product RTMR in Example 8.3.

=(R MR
T)

5

Figure 8.15. Non-zero pattern for the product RTMR for body 5 in Example 8.3.

where matrix Jb is the constant inertia tensor expressed in the moving frame of
body b.

8.2.8 Computation of the Matrix Product RTMR

One of the most attractive features of the choice of dependent coordinates that
has been made (reference point coordinates) is that the multibody system mass
matrix M has a block-diagonal structure without coupling terms between con-
tiguous bodies. The immediate application of this property is that the triple ma-
trix product (RTMR) that appears in the equations of motion (8.38) can be
computed efficiently on an element-by-element basis. This means this triple
product can be computed as

RT M R = R i
T M i R iå*

i =1

Nb

(8.107)

where the symbol å* represents the combined action of summation and assem-
bly of the resulting matrix. Due to the fact that there are no coupling terms in
matrix M, equation (8.107) shows that the triple product can be performed ele-

302 8. Improved Formulations for Real-Time Dynamics

ment-by-element without increasing the total number of arithmetic operations.
This product can be computed independently for each body which allows an easy
parallelization that fits perfectly into the whole computational scheme.

With this formulation, there is no need to treat in a special way the junction
bodies, or bodies that are linked to more than two other bodies. In the example
of Figure 8.13, the only junction body is body 2, which is linked to bodies 1, 3,
and 5. The term in the summation corresponding to it can be computed exactly
in the same way as all the other terms.

If one returns again to the multibody system of Example 8.3 (which is de-
picted in Figure 8.13), one can symbolically represent the product RTMR a s
shown in Figure 8.14. Submatrices that contain non-zero terms have been repre-
sented with a shaded pattern. When the product MR is calculated, the distribution
of zero and non-zero terms in the resulting matrix coincides with the one in ma-
trix R. This means that the product between RT and MR involves two matrices
with exactly the same structure of matrix R. Then it is possible to obtain the
whole product as a summation of individual terms corresponding to each body.
The terms that involve body 5, (RTMR)5 have been outlined with a dark shaded
pattern and are represented separately in Figure 8.15, once the zero columns of
matrix R have been removed. Again, shaded terms correspond to non-zero ele-
ments in the different matrices. The result of this small triple product is a sym-
metric matrix. Only the terms above the diagonal need to be computed. Finally,
the partial result corresponding to body 5 has to be assembled in the final matrix
on rows and columns 1, 2, and 5. This computational scheme can be applied to
all the bodies in the system, so as to obtain the matrix RTMR in a very effi-
cient way.

8.2.9 Computation of the Matrix Product RTMSc

Looking at equation (5.65) in Chapter 5, it can be seen that the product (Sc) has
a clear physical meaning, that makes it very easy to compute. If one makes the
independent accelerations z equal to zero and then computes the dependent accel-
erations q, the resulting vector turns out to be (Sc). Therefore, (Sc) represents
the vector of dependent accelerations that depends only on the independent veloci-
ties. The recursive computation of accelerations has been described in Section
8.2.5. It can be applied to this particular case.

Once the term (Sc) has been computed, the final product RTMSc can be
computed again in an element-by-element basis, recovering the partial product
RTM from the previous section.

8.2.10 Computation of the Term RT(Q Ð C)

Once more, this product corresponds to the projected external and velocity-depen-
dent inertia forces and does not offer any special difficulty. This product can be
computed on an element-by-element basis and then conveniently assembled to
produce the corresponding forcing term in the equations of motion.

8.2 Velocity Transformations for Open-Chain Systems 303

Figure 8.16. Opening a closed-chain system by removing rigid body constraints.

Figure 8.17. Opening a closed-chain system by removing joint constraints.

8.3 Velocity Transformations for Closed-Chain Systems

It was shown in Section 5.3 how a closed-chain multibody system can be trans-
formed to an open-chain by simply eliminating certain constraint equations that
enforce the closure of the loops.

Two different formulations, A and B, have been introduced in Section 8.2.5.
Which one is used depends on how the velocities and accelerations are repre-
sented. Formulation A considers as variables the natural coordinates, that is,
the Cartesian components of basic points and unit vectors. The constraint
equations that these coordinates generate (See Chapter 2) are primarily due to the
rigid body conditions. Therefore, the way to proceed in this case to open the
kinematic chain is by eliminating certain rigid body conditions of some of the

304 8. Improved Formulations for Real-Time Dynamics

elements of the multibody system. Figure 8.16 illustrates how this procedure
may be applied to a complex system using the concepts just explained.

Formulation B considers that the dependent velocities of each element are
characterized by the velocity of the center of gravity and by the angular velocity
of the element. In this case, the constraint equations (See Chapter 2) are origi-
nated not at the elements but at the kinematic joints. Therefore, in order to open
a loop, one needs to cut a joint by removing the corresponding constraints.
Figure 8.17 illustrates this procedure.

Regardless of what formulation is used to represent the dependent velocities
and accelerations of the multibody system, it is always possible to divide the
constraint equations into two major groups: the first, that will be represented by
the superscript 1, is formed by the constraints of the open-chain multibody sys-
tem that result from the opening of the kinematic loops; the second, that in the
sequel will be represented by the superscript 2, will be formed by those con-
straints needed to close the loops previously opened. Consequently, the velocity
constraint equations become

FFFF q
1

FFFF q
2

 q = b º Ð FFFFt
1

FFFFt
2

(8.108)

where b=0, if the constraints are scleronomous. Let m1 and m2 be the number of
rows of FFFF q

1 and FFFF q
2, respectively. Assume that m1>>m2 (m1 much greater than

m2), since the opening of the loops will be done by removing only a few con-
straint equations.

If the number of dependent coordinates is n, the number of degrees of freedom
of the open- and closed-chain subdivisions will be f1=nÐm1 and f2=nÐm1Ðm2, re-
spectively.

The key point in this formulation is the fact that the matrix R1, which de-
fines a basis for the nullspace of FFFF q

1, can be directly obtained by the procedure
explained in Section 8.2 without forming and triangularizing the Jacobian matrix
FFFF q

1. This leads to important savings in computational costs. Even though the
matrix FFFF q

1 is never formed explicitly, the following relationships will still be
satisfied:

FFFF q
1 R 1 = 0 (8.109)

q = R 1 z
1

(8.110)

q = R 1 z
1
 + S1c 1 (8.111)

where the vector z1 is formed by the base body and relative joint coordinates of
the open-chain system. Now, in the closed-chain system, these coordinates z1 are
not independent, because they are interrelated through the constraints FFFF2. The
problem is that the constraints FFFF2 are not written in terms of z1 but in terms of
q. However, this problem may be easily solved as follows.

8.3 Velocity Transformations for Closed-Chain Systems 305

The equations of motion seen in Chapter 5 that are based on the Lagrange
multipliers technique will be considered. These equations, applied to the problem
at hand, become

M FFFF q
1T FFFF q

2T

FFFF q
1

0 0

FFFF q
2

0 0

q

llll1

llll2

 =
Q
c1

c2

(8.112)

where llll1 and llll2 are the multipliers that correspond to the partitions FFFF q
1 and FFFF q

2,
respectively. The vector Q includes the external as well as all the velocity depen-
dent inertia forces.

Substituting equation (8.111) into equation (8.112) and pre-multiplying the
first row of equation (8.111) by (R1)T, one obtains

R
1T

M R
1

 R
1T

 FFFF q
1T

R
1T

 FFFF q
2T

FFFF q
1
 R

1
0 0

FFFF q
2
 R

1
0 0

z

1

llll1

llll2

 =

R
1T

 Q Ð R
1T

 M S
1
c1

c 1 Ð FFFF q
1
 S

1
c1

c 2 Ð FFFF q
2
 S

1
c1

(8.113)

However, introducing equation (8.109), the second row and column of equa-
tion (8.113) cancels out. It follows that the coefficient of llll1 vanishes and the
following equation is obtained:

R
1T

 M R
1
 R

1T
 FFFF q

2T

FFFF q
2
 R

1
0

 z
1

llll2
 =

R
1T

Q Ð R
1T

 M S
1
c1

c 2 Ð FFFF q
2
 S

1
c1

(8.114)

The new mass matrix is of size (f1´f1), instead of (n´n) as was the original
mass matrix M. The new projected Jacobian matrix (FFFF z1=FFFF q

2R1) is of size
(m2´f1). Since m2<<m1 and f1<<n, this new Jacobian matrix is much smaller
than the original in equation (8.112), that had a dimension of ((m1+m2)´n).

The matrix transformations implied in equation (8.114) may be performed in
an element-by-element basis and thus can be parallelized in an optimal manner.

Therefore, the reduced system of equations (8.114) has a size much smaller
than that of system (8.112). The equations of motion (8.114) may be solved by
either one of the following methods, studied in detail in Chapter 5:

a) Lagrange multipliers. The system of equations (8.114) can be solved as is or
including the Baumgarte stabilization terms, as explained in Section 5.1.

b) Penalty formulation. The application of the penalty formulation is straight-
forward. By introducing FFFF z1 = FFFF q

2R1 and Qz1 = R1T(QÐMS1c1), this formu-
lation (See equation (5.37)) leads to

R
1T

MR
1
 + a FFFF z1

T
 FFFF z1 z

1
 = Qz1 Ð a FFFF z1

T FFFF z1
T

 z
1
 Ð FFFFt z1 +

+ 2 W m FFFF z1 + W 2
 FFFF z1

(8.115)

306 8. Improved Formulations for Real-Time Dynamics

c) Independent coordinates. The kinematic part of (8.114) can be written in the
following form:

FFFF z1 z
1
 = c 2 (8.116)

where FFFF z1 = FFFF q
2R1 and c 2 = c2ÐFFFF q

2S1c1. One can always choose a subset of
independent accelerations z from the vector z

1
. Using the method of the

Boolean matrix B (See Section 3.3), the following relation is satisfied:

B z
1
 = z (8.117)

By simply joining equations (8.116) and (8.117), the following equation is
obtained:

FFFF q
2
 R

1

B
 z

1
 = c2

z
(8.118)

If the unit values of the matrix B have been chosen according to the pivot
structure of the matrix FFFF q

2R1, the leading matrix of equation (8.118) can be
inverted to yield

z
1

 =
FFFF q

2
 R

1

B

 Ð 1

 = c2

z
 º S

2
 c 2 + R

2
z (8.119)

Equation (8.119) leads to the definition of the matrices R2 and (S
2
c2). The

columns of the matrix R2 constitute a basis of the nullspace of the projected
Jacobian matrix FFFFz1=FFFFq

2 R1. Substituting equation (8.119) into equation
(8.114) and pre-multiplying by R2T, one obtains

R
2T

 R
1T

 M R
1
 R

2
 z =

= R
2T

 (R
1T

 (Q Ð M S
1
 c1) Ð R

1T
 M R

1
 S

2
 c2)

(8.120)

which is the final equation of motion in independent coordinates.
While the matrix R1 (of size (n´f1)) corresponding to FFFF q

1, has been directly
obtained without forming and triangularizing FFFF q

1, the matrix R2 (of order
(f1´f2)) has to be computed numerically. The size of R2 can be significantly
smaller than R1 as may be seen in Figure 8.18, where the sizes of the matri-
ces involved in this formulation are illustrated for a typical case.
Table 8.2 shows the scheme of a numerical algorithm applicable to closed-
loop multibody systems using the method presented in this section, with the
Lagrange multipliers version.

8.3 Velocity Transformations for Closed-Chain Systems 307

M

n

n

0

n

Sym

0

f

f

0

0 0

m1

m2

Fq
1

Fq
2

Fq
1T Fq

2T

m 1 m2

R1

f1=n-m1=f+m2

m2

f1
R1TMR1

Fq
2R1

R 2n-m1=f1

n-m1-m2=f

R2TR1TMR1R2

Figure 8.18. Matrix pattern for the method based on velocity transformations.

It may be seen that dealing with closed-chains does not complicate the formu-
lation very much. Thus a good numerical efficiency and a very simple imple-
mentation can be expected.

8.4 Examples Solved by Velocity Transformations

In Sections 8.2 and 8.3, the application of velocity transformations to open- and
closed-chain kinematic chains has been presented. In this section, two rather
complex theoretical examples of the above methods will be described in detail.
Afterwards, some numerical results will be presented to demonstrate the effi-
ciency of these formulations.

308 8. Improved Formulations for Real-Time Dynamics

Table 8.2. Algorithm to formulate and integrate the equations of motion of an closed-
chain system, by the Lagrange multipliers method.

Step Data Result Mode

1 z1 q recursive

2 q R1 e-by-e or rec.

3 z
1, q q recursive

4 z
1, q, q (S1c1) e-by-e

5 R1, M R1T M R1 e-by-e

6 R1, Q R1T Q e-by-e

7 R1, S1c1, M R1T M S1c1 e-by-e

8 q, q FFFF q
2
, c2 e-by-e

9 FFFF q
2
, R 1 FFFF q

2 R1 e-by-e

10 c2 Ð FFFF q
2
S1c1 e-by-e

11 linear equations z1 global

12 (z1, z1)t (z1, z1)t+h global

GO TO 1

8.4.1 Open-Chain Example: Human Body

Figure 8.19 shows an interesting example of open kinematic chain: a dynamic
model of the human body with 40 rigid bodies and 45 degrees of freedom. All
joints are of the revolute type. Some of them are defined by sharing one point
and one unit vector and others are defined by sharing two points.

This mechanical model of the human body has been used for some time in
several studies on sport biomechanics, as the ones shown in Figures 1.5 and 1.6
which include also realistic geometric models.

Table 8.3 summarizes the resulting theoretical number of floating-point
arithmetic operations both for Formulations A and B. It may be seen that impor-
tant savings can be obtained with Formulation B. The most important conclu-
sion is that, according to the number of floating-point operations of Formulation
B, a 6 Mflops computer would be enough to get a function evaluation every 10
msec. This CPU performance is available in many RISC low-cost workstations.

8.4 Examples Solved by Velocity Transformations 309

No. de bodies
No. d.o.f.
No. points

No. vectors

40
6+39

28

62

Figure 8.19. Mechanical model of the human body.

Many additional unit vectors (not represented in Figure 8.19) have been intro-
duced in Formulation A. This was done in order for the model to have constant
mass matrices with natural coordinates.

8.4.2 Closed-Chain Example: Heavy Truck

Figure 8.20 shows the scheme of a heavy truck suspension and steering system.
This system consists of the chassis, the front axle, the rear axle, the leaf-springs
modeled by four articulated rigid bodies, the front and rear stabilization bars, the

310 8. Improved Formulations for Real-Time Dynamics

No. of rigid bodies:
Joints:
Open-loop d.o.f.:
No. d.o.f.:

33 (21 + 12)
23R + 15S +6U + 1G
39
18

Dependent coordinates: 285 (246 + 39)

S

S

R R

R U
R

R
S

R
SS

R

R

U

R

R S

U U

S R

R

U

R

R

S
S

R

S
R

R R

R

U

S

R R

S

S

S

S

R

G

R

Figure 8.20. Mechanical model of a heavy truck.

elements of the steering system, and the wheels. There are 33 rigid bodies and 18
degrees of freedom. With Formulation A the loops have been opened by remov-
ing the constraint equations corresponding to the elements represented by dashed
lines. In this case there are 39 open-chain degrees of freedom or relative coordi-
nates.

With formulation B, some joints have been cut to obtain an open-chain sys-
tem with 48 degrees of freedom. The cut joints are shown in Figure 8.20 with a
line crossing the corresponding joint. Table 8.4 presents the theoretical count of
floating-point operations for both Formulations. Again important savings are
obtained with Formulation B. In spite of the closed loops of this system, it
needs less arithmetic operations than the human model of Figure 8.19, because
the branches of the open-chain model of the truck are shorter than in the human
body.

8.4 Examples Solved by Velocity Transformations 311

Table 8.3. Number of floating-point arithmetic operations for the human body
(Formulations A and B).

Function Mode Formulation A Formulation B

z ® q Glob-rec. 1820m + 859a 1560m + 960a

z ® q Glob-rec. 615m + 441a 360m + 360a

q z = 0 = S c Glob-rec. 1089m + 915a 840m + 840a

M e-by-e -- 1080m + 480a

c e-by-e -- 600m + 360a

R e-by-e 4716m + 3537a 1050m + 525a

RTMR e-by-e 25824m + 22142a 7482m + 5285a

RTMSc e-by-e 3060m + 2885a 1050m + 875a

RT(Q Ð c) e-by-e 3060m + 2885a 1050m + 995a

ffff q
2 R e-by-e -- --

c 2 Ð ffff q
2 S c e-by-e -- --

Assembly e-by-e 3918a 700a

Linear eqs. Global 16710m + 16170a 16710m + 16170a

TOTAL 56894m + 53752a 31782m + 27550a

Table 8.4. Number of floating-point arithmetic operations for a heavy truck
(Formulations A and B).

Function Mode Formulation A Formulation B

z ® q Glob-rec. 1500m + 1222a 1170m + 720a

z ® q Glob-rec. 507m + 627a 585m + 360a

q z = 0 = S c Glob-rec. 561m + 492a 870m + 540a

M e-by-e -- 837m + 372a

c e-by-e -- 465m + 279a

R e-by-e 960m + 726a 306m + 153a

RTMR e-by-e 25890m + 20893a 1947m + 1394a

RTMSc e-by-e 4947m + 4120a 306m + 255a

RT(Q Ð c) e-by-e 2040m + 1870a 306m + 348a

ffff q
2 R e-by-e 2220m + 1850a 1224m + 1374a

c 2 Ð ffff q
2 S c e-by-e 432m + 432a 108m + 108a

Assembly e-by-e 897a 900a

Linear eqs. Global 16000m + 16000a 16000m + 16000a

TOTAL 55084m + 49129a 24124m + 23406a

312 8. Improved Formulations for Real-Time Dynamics

Figure 8.21. Bricard mechanism. Figure 8.22. Five-bar pendulum.

R

S S

S

RR

S

R U

S

R

S R

S P

S

U

PR

P

S

R

S

R R S

PS

RSS

S

R

S

Figure 8.23. Multibody model of a car suspension and steering system.

8.4 Examples Solved by Velocity Transformations 313

Table 8.5. Comparative results in CPU milliseconds for function evaluation.

Penalty method
(Section 5.1.4)

Matrix R
(Section 5.2.3)

Formulation B
(Section 8.2.5.2)

Bricard 8,01 8,73 1,33

Five-bar pendulum 12,00 18,65 1,29

Car model 87,79 224,54 12,21

Human body 91,30 942,64 23,39

8.4.3 Numerical Results

Finally, some comparative numerical results obtained with the Formulation B,
and with two other standard dynamic formulations explained in Chapter 5 will be
presented. Four examples will be considered. Two of them are very simple. The
other two present some degree of complexity.

Figures 8.21 and 8.22 show two simple three-dimensional multibody systems
with five bodies and revolute joints only. Figure 8.21 shows the Bricard mecha-
nism which is an over-constrained closed-chain system. According to the Gr�bler
criterion, this mechanism has zero degrees of freedom. Because of the particular
orientation of the axes in the revolute joints, it actually has one degree of free-
dom. Figure 8.22 illustrates a five-bar three-dimensional pendulum that can be
obtained directly from the Bricard mechanism by opening the chain through the
removal of one of the fixed revolute joints. This pendulum has five degrees of
freedom.

Figure 8.23 shows a car model that includes the chassis, the steering and the
suspension system. The front suspension is a McPherson type and the rear sus-
pension is based on the five-point system. The complete model has 25 rigid bod-
ies with general mass and inertia properties and 15 degrees of freedom. This car
model corresponds to the more realistic model shown in Figure 1.2 of Chapter 1.
The fourth example is based on the 45 bodies and 45 degrees of freedom human
body model shown in Figure 8.19 which constitutes the basis of the models pre-
sented in Figures 1.5 and 1.6 of Chapter 1.

These four examples with different topology and degree of complexity have
been analyzed using three dynamic formulations: a) the penalty method, based on
dependent coordinates (Section 5.1.4); b) the method of independent coordinates
based on the matrix R (Section 5.2.3); and c) the Formulation B previously ex-
plained in this chapter (Section 8.2.5.2).

Table 8.5 contains the CPU time per function evaluation (computation of ac-
celerations from positions and velocities) expressed in milliseconds for the four
examples and using the three different formulations. The results have been ob-
tained with a SG workstation using a MIPS 3000 processor rated at 25 MHz

314 8. Improved Formulations for Real-Time Dynamics

(3.9 DP Mflops in the Linpack test). Taking into account that there are currently
newer low-cost workstations that are much more powerful, it may be concluded
from the results shown in Table 8.5 that real time dynamic simulation is at hand
for these systems, at least from the point of view of fast function evaluation.

These results do not provide an idea of the absolute efficiency of each method,
since the total time of integration depends not only on the time required per func-
tion evaluation, but also on the type of numerical method used for the integra-
tion of the equations of motion. Standard ODE integrators, such as the DE
Shampine and Gordon routine, require less function evaluations with the matrix
R or Formulation B than with the penalty method. The penalty method leads to
stiffer equations and works more efficiently in conjunction with more stable in-
tegrators (See Section 8.5). In order to get the best possible response, the con-
cepts developed in Chapters 7 and 8 must be jointly considered along with the
particular physical characteristics of the case at hand.

8.5 Special Implementations Using Dependent Natural
Coordinates

So far in this chapter dynamic formulations have been considered that, although
they may use dependent coordinates to define the motion of the system, try to ul-
timately solve the equations of motion through a minimum set of independent
(in the case of open-chain systems) or dependent coordinates (in closed chain sys-
tems). In our search for formulations suitable for real time analysis, we present
in this section a method proposed by Bayo et al. (1991) which is an alternative
to the methods seen already in this chapter. This method is based on formulating
and solving the equations of motion with respect to a full set of dependent coor-
dinates without intermediate transformations. The constraints are considered via a
modification of the penalty formulation seen in Chapter 5. The numerical inte-
gration is carried out using the trapezoidal rule (See Chapter 7) with the posi-
tions, rather than accelerations, as primary variables.

Among the possible sets of dependent coordinates, the natural coordinates
(explained in Chapter 2) provide the best setting. They present important advan-
tages over other possible sets: first, the use of elements with two basic points
and two unit vectors leads to a constant mass matrix in the inertial frame and to
the absence of velocity dependent (centrifugal and Coriolis) inertia forces in the
formulation; and secondly, the natural coordinates originate quadratic constraint
equations that yield linear Jacobian matrices. As clearly explained in Chapter 2,
these Jacobian matrices can be evaluated by a number of arithmetic operations
that is considerably lower than those required by other types of coordinates.

Other choices of 12 Cartesian components that define the position and orien-
tation of the rigid body will also lead to a constant mass matrix, such as one
point and three Cartesian vectors, four points, and so forth. The choice of two
points and two unit vectors is due to the fact that these variables can be shared

8.5 Special Implementations Using Dependent Natural Coordinates 315

by contiguous elements; thus leading to a lesser number of dependent coordinates
that will represent the multibody system.

8.5.1 Differential Equations of Motion in the Natural
Coordinates

A dynamic system shall be considered whose configuration is characterized by a
vector q of n fully Cartesian coordinates that satisfy m constraint conditions
FFFF=0. Let L=TÐV be the Lagrangian function of the system, where T and V are
the kinetic and potential energies, respectively.

In order to introduce the constraint conditions, a penalty formulation slightly
different from that explained in Section 5.2 will be used, that will also lead to a
set of ordinary differential equations (ODE), and will guarantee the fulfillment of
the constraint equations. In order to introduce these constraints, a fictitious po-
tential is added to the expression of the Hamilton's principle:

V* = 1
2

 FFFFT aaaa FFFF (8.121)

and a set of Rayleigh's dissipative forces

G* = Ð aaaa mmmm FFFF (8.122)

The penalty factors ak, k= 1,2,... m (with each constraint having a different
factor) are large real numbers that represent the spring values of the physical sys-
tem associated with the constraint Fk = 0, and (akmk) represents the damping
characteristics. Similar to the development already carried out in Chapter 5, the
application of the Lagrange's equations directly leads to

M q + FFFF q
T aaaa FFFF + mmmm FFFF = Q (8.123)

where FFFFq is the (m´n) Jacobian matrix of the constraint equations, M the mass
matrix, and Q the external forces plus those coming from a potential acting on
the system. The matrices aaaa and mmmm are (m´m) diagonal matrices that contain the
values of the penalty numbers and damping coefficients. If the same values are
used for all the constraints these matrices become identity matrices multiplied by
constant factors. Remember that the natural coordinates described above yield a
constant mass matrix. In addition, neither Coriolis nor centrifugal forces are pre-
sent in the vector Q. Consequently, the only nonlinear components in (8.123)
except for position-dependent forces are the penalty terms which physically rep-
resent the forces necessary to maintain the constraint conditions. The product
aaaa(FFFF+mmmmFFFF) represents an approximation to the Lagrange multipliers that arise in
the classical formulation.

The nonlinear system (8.123) without the velocity constraints and the penalty
system only composed of springs is merely stable. Depending on the type of in-
tegrator used, the numerical integration may lead to numerical instabilities in
long simulations when using large time steps. These problems disappear when

316 8. Improved Formulations for Real-Time Dynamics

the velocity constraints consisting of fictitious dissipative forces are included in
the formulation as done in (8.123), or when the numerical integrator supplies ar-
tificial numerical damping (for example the a-method of Hilber, Hughes, and
Taylor seen in Chapter 7).

Augmented Lagrangian formulation. Using the integration procedure described
below and penalty factors equal to 107 in double precision arithmetic, the solu-
tion of (8.123) can be achieved with an excellent satisfaction of the constraints.
In case a wider range of penalty values is desired, a correcting scheme can be in-
troduced by means of an augmented Lagrangian formulation also seen in Chapter
5. These methods assure convergence within the desired constraint tolerances
without the need for very large penalty factors, thereby avoiding ill-conditioning
problems.

The expression of the equations of motion can be augmented by adding the
Lagrange multipliers as follows:

M q + FFFF q
T aaaa FFFF + mmmm FFFF + FFFF q

T llll * = Q (8.124)

It may be seen by comparing equation (8.124) with the classical Lagrange
multipliers technique (equation (5.8)) that

llll = llll * + aaaa FFFF + mmmm FFFF (8.125)

where llll are the true multipliers. Since the values of llll* are unknown a priori,
an iterative procedure is necessary to solve equation (8.125). In each iteration a
new value of llll* is computed as follows:

llll i+1
* = lllli

* + aaaa FFFF i + mmmm FFFFi (8.126)

with llll0
*=0 for the first iteration. In the limit llll0

*=llll, however, enough accuracy is
obtained in one or two iterations. Equation (8.126) physically represents the in-
troduction at step i+1 of forces that tend to compensate the fact that the con-
straints are not exactly zero. A consequence of this iteration is that small devia-
tions in the constraints resulting from either the integration process or small
penalty factors will be eliminated by the Lagrange multiplier terms of (8.124).
The additional computational effort that it requires is not significant when com-
pared to that necessary to solve the system of nonlinear differential equations.

8.5.2 Integration Procedure

For real time integration, it is necessary to use a fixed integration formula that
will yield the same computational time in each integration step which has to be
smaller than the step size. This condition imposes severe limitations to integra-
tion methods. They must be computationally inexpensive with few function
evaluations and iterations in each step and must allow large step sizes without
introducing excessive loss of accuracy and Ðmost importantlyÐ without becom-

8.5 Special Implementations Using Dependent Natural Coordinates 317

ing unstable. Because of the ease of implementation, the trapezoidal rule has
been chosen for the integration of the equations of motion in real time. This
method is implicit, A-stable, and second order. It was shown in the numerical
example of Chapter 7 how this rule performs, when it is directly combined with
the equations of motion taking the positions as primary variables. It will be
shown here how this integration scheme fits quite well into the framework pro-
vided by the fully Cartesian coordinates and the penalty formulation. Other re-
cently proposed methods based on the midpoint rule that preserve energy and an-
gular momentum (Simo and Wong (1991)) could also be used within this con-
text.

The trapezoidal rule can be written as:

qn+1 = qn + h
2

 qn + qn+1

qn+1 = qn + h
2

 qn + qn+1
(8.127)

where h is the time step. These finite difference expressions can be rewritten,
considering qn+1 as the primary variable and solving for the velocities and accel-
erations at step (n+1). Consequently,

qn+1 = 2
h

 qn+1 Ð q n+1

qn+1 = 4
h2

 qn+1 Ð q n+1

(8.128)

Vectors qn+1 and qn+1 depend on the positions, velocities, and displacements
at step n and can be written as:

qn+1 = qn + 2
h

 qn

qn+1 = qn + 4
h

 qn + 4
h2

 qn

(8.129)

The setting up of the difference equations as done in (8.128) adds numerical
efficiency to the computer implementation of the algorithm. Knowing that
(FFFF = FFFF qq + FFFF t), the substitution of (8.128) into the equations of motion
(8.124) yields the following expression:

4
h2

 M qn+1 + FFFF q
T aaaa FFFF + FFFF q (2

h
 mmmm q n+1 Ð mmmm q n+1) + mmmm FFFFt =

= Q + M qn+1

 (8.130)

which constitutes a set of nonlinear algebraic equations with qn+1 as the only
unknowns. The use of Newton-Raphson iteration leads to the following iteration
process:

318 8. Improved Formulations for Real-Time Dynamics

Dqi+1 = Ð ¶f
¶q i

Ð1

 f(qi) (8.131)

where i represents the iteration number. The function f is defined as

f = M qn+1 + FFFF q
T aaaa FFFF + mmmm FFFF Ð Q (8.132)

and the tangent matrix as

¶f
¶q

 = 4
h2

 M + FFFF q
T bbbb FFFFq + FFFF q q

T aaaa FFFF + mmmm FFFF + FFFF q
T aaaa mmmm FFFF q q q Ð Q q (8.133)

where bbbb=aaaa (1 + 2m/h). Qq is the contribution to the tangent matrix coming
from the nonlinear generalized forces (such as springs). A close examination at
the tangent matrix reveals that the second term of the RHS of equation (8.133) is
always much larger than the third and the fourth. This is so: first, by virtue of
the fully Cartesian coordinates, FFFFqq is a very sparse third order tensor in which
the only non-zero terms are constants of value 2 (these correspond to the expo-
nents of the quadratic terms); and secondly, the values of FFFF and m FFFF are always
negligible compared with the values of FFFFq. Furthermore, the parameter m, which
is an order of magnitude smaller than h, will make the fourth term negligible.
This will be shown in the next section. Neglecting these terms may no longer
assure the quadratic convergence of the Newton-Raphson iteration. However, ac-
curacy and quasi-second order behavior are still satisfied. As a consequence, a
quasi-tangent matrix can be defined as

¶f
¶q

 @ 4
h2

 M + FFFF q
T bbbb FFFFq Ð Q q (8.134)

where the diagonal matrix bbbb becomes a constant times the identity matrix, when
all the constraints are assigned the same penalty values.

8.5.3 Numerical Considerations

Improving convergence. The iteration process defined by (8.131) is carried out
until ||Dq|| is smaller than a prescribed tolerance. For real time simulation, the
iteration is stopped after a fixed number of iterations, that is one or at most two
per time step. Convergence can be accelerated at each time step if the iteration is
started not from the solution at the previous time step, but from the solution
given by a predictor. A good second order predictor is the modified trapezoidal
rule or Heun method which gives the following explicit coordinate interpolation:

qn+1 = qn + h qn + h
2

2
 qn (8.135)

Once the solution has been obtained at step n, the iteration process of (8.131)
can be started at step n+1 with qn+1 rather than qn. Since no function evaluation

8.5 Special Implementations Using Dependent Natural Coordinates 319

Table 8.6. Percentage of the total time required by each algorithm phase.
__

% of CPU time
__

Solutions of equations 35.0

Forming the tangent matrix 33.5

Forming the residual 14.6

Evaluating the Jacobian matrix and constraints 13.0

Updating velocities and accelerations 3.5

Predictor 0.4

Total 100.0
__

is required in equation (8.135), the use of this predictor adds an insignificant
amount of computations. As will be shown in an example below, it accelerates
the integration process substantially.

Computer implementation. Fully Cartesian coordinates yield a constant mass
matrix. This obviously represents a substantial savings in numerical computa-
tions at the time of forming the quasi-tangent matrix of equation (8.134). The
major burden in computing this matrix lies in the product FFFF q

TbbbbFFFFq. Note that FFFF q
is a sparse matrix and that due to the type of coordinates chosen the only non-
zero terms are linear. The formation of this linear Jacobian matrix is rather inex-
pensive computationally. Furthermore, the product of the Jacobian matrices can
be optimized by the use of sparse matrix operations. Note that the coordinates
can be numbered so that a minimum profile of the final matrix is obtained.

This way of introducing the constraints through a penalty method leads to a
tangent matrix that is dominated by the terms in the main diagonal. Conse-
quently, the triangularization process does not require pivoting. Although the
number of arithmetic operations is problem dependent, Table 8.6 gives an indica-
tion of the percentage time that each of the different phases of the solution pro-
cess takes as a fraction of the total time. This Table corresponds to an average of
many simulations performed by the authors. The most time consuming parts
correspond to the formation of the tangent matrix and the solution of the result-
ing equations. In all the cases studied the use of the Heun method as a predictor
eliminates the need for an extra iteration. Yet it only takes 0.4% of the time
taken to complete one iteration. For real time applications, the time step size
should be chosen so that at most two iterations are performed per time step.

Choosing the velocity constraint factor. The characteristic equation correspond-
ing to the constraint condition mF+F=0 is mA+A=0 . and its root is l=Ð1/m .
The region of absolute stability for the trapezoidal rule is the negative half-plane.
The product hl must lie in the negative real axis. Thus, h/m>0. At this stage,
there are a series of possibilities. If both constraints F and F are wanted to be

320 8. Improved Formulations for Real-Time Dynamics

satisfied within the same accuracy, then both should be penalized with the same
factor. Therefore m should be equal to one. This value, however, tends to intro-
duce damping in the system's response, producing a gradual decrease in the en-
ergy of the system. If the intention is to just eliminate the possible instabilities
during the integration process, then h/m can be chosen away from the area of the
stability region where the response of the multi-body system lies. In the exam-
ples shown below, values of h/m were chosen between 30 and 80 to eliminate
the high frequency response in the acceleration. This yielded excellent results.
Very small values of the parameter m may not provide sufficient damping to
eliminate the numerical instability. On the other hand, large values of m will
eliminate the instability but may introduce artificial damping in the response of
the multibody system.

The method explained above is systematic and general, and shows very good
convergence characteristics, even for large time steps. A numerical simulation is
shown next which demonstrates its capabilities.

Example 8.6

Five-link open-chain multibody system. The multibody system shown in Figure
8.21 is composed of five links interconnected by revolute joints and has a total of
30 coordinates, 25 constraint conditions, and five degrees of freedom. Each link
has a unit mass which is equally lumped at the joints to yield a stronger motion.
The motion is due to its self-weight. The simulation is carried out using the algo-
rithms described above for 20 seconds with a time step h=0.008 seconds.

The multibody system is analyzed with m=h/80 and a=107. The response is not
sensitive to the value of m. Similar responses are obtained with h/40 < m < h/120
with slightly more damping for larger values of m. The time history of the vertical
tip acceleration is depicted in Figure 8.24. This time history gives a clear indica-
tion that the multibody system undergoes a very strong motion with peak acceler-
ations of the order of 180 m/sec2. This again illustrates the excellent convergence
characteristics of the algorithm. In fact, the analysis was stopped after 10 minutes
of simulation without any appearance of convergence problems. Each time step
requires two iterations with a tolerance in the positions of 5*10Ð7, and each itera-
tion takes 6.5 milliseconds of CPU time of a DECstation 3100.

The time history of the energy is shown in Figure 8.25. This time history
shows how the energy is well preserved for this strong motion, even with a rela-
tively large time step (the maximum error is 1.3%). Figure 8.26 illustrates the
time histories of the constraint errors for a penalty factor of: 107 (solid line), 106

(short dashed curve), and 106 with 1 iteration of the augmented Lagrangian formu-
lation. It can be seen how the maximum constraint error using the penalty value of
107 is 10Ð5. With the penalty value of 106 the maximum constraint error is about
10Ð4, but the use of one iteration of the augmented Lagrangian method brings it
down an order of magnitude.

8.5 Special Implementations Using Dependent Natural Coordinates 321

Figure 8.24. Vertical tip acceleration of the open-chain multibody system.

Figure 8.25. Total energy time history of the open-chain multibody system.

322 8. Improved Formulations for Real-Time Dynamics

Figure 8.26. Maximum errors in the constraints using a penalty value of 107 (solid
line), 106 (short dashed line), and 106 with augmented Lagrangian formulation (long
dashed line).

Figure 8.27. Vertical acceleration at the middle link of the Bricard mechanism.

8.5 Special Implementations Using Dependent Natural Coordinates 323

Figure 8.28. Total energy time history of the Bricard mechanism.

Example 8.7

Five-link closed-chain multibody system. The multibody system shown in Figure
8.21 is transformed into the closed-chain Bricard mechanism shown in Figure
8.22. The simulation is carried out for 40 seconds with a time step of 0.03 sec-
onds, a penalty value of 107, and m=h/60. Figure 8.27 illustrates the acceleration
time history of the middle link which shows that this multibody system undergoes
a smoother motion than the previous one. Each time step requires two iterations
with a tolerance in the positions of 5*10Ð7. Each iteration takes 5.0 milliseconds
of CPU time. The total CPU time required to simulate 40 seconds simulation is
about 13 seconds. The time history of the energy is depicted in Figure 8.28 which
again shows how well the energy is preserved. The maximum error is 0.03%.

References

Argyris, J., "An Excursion into Large Rotations", Computer Methods in Applied
Mechanics and Engineering, Vol. 32, pp. 85-155, (1982).

Armstrong, W.W., ÒRecursive Solution to the Equations of Motion of an N-Link
ManipulatorÓ, Proc. 5th World Congress on Theory of Machines and
Mechanisms, Vol. 2, pp. 1343-1346, Montreal, (1979).

324 8. Improved Formulations for Real-Time Dynamics

Avello, A., Jim�nez, J.M., Bayo, E., and Garc�a de Jal�n, J., "A Simple and Highly
Parallelizable Method for Real-Time Dynamic Simulation Based on Velocity
Transformations", to appear in Computer Methods in Applied Mechanics and
Engineering, (1993).

Bae, D.-S. and Haug, E.J., ÒA Recursive Formulation for Constrained Mechanical
System Dynamics. Part I: Open-Loop SystemsÓ, Mechanics of Structures and
Machines, Vol. 15, pp. 359-382, (1987).

Bae, D.-S. and Haug, E.J., ÒA Recursive Formulation for Constrained Mechanical
System Dynamics. Part II: Closed-Loop SystemsÓ, Mechanics of Structures and
Machines, Vol. 15, pp. 481-506, (1987-88).

Bae, D.-S., Hwang, R.S., and Haug, E.J., ÒA Recursive Formulation for Real-Time
Dynamic FormulationÓ, 1988 Advances in Design Automation, ed. by S.S. Rao,
ASME, pp. 499-508, (1988).

Bae, D.-S. and Won, Y.S., ÒA Hamiltonian Equation of Motion for Real Time Vehicle
SimulationÓ, 1990 Advances in Design Automation, ed. by B. Ravani, ASME, pp.
151-157, (1990).

Bayo, E., Garc�a de Jal�n, J., Avello, A., and Cuadrado, J., "An Efficient
Computational Method for Real Time Multibody Dynamic Simulation in Fully
Cartesian Coordinates", Computer Methods in Applied Mechanics and
Engineering, Vol. 92, pp. 377-395, (1991).

Featherstone, R., ÒThe Calculation of Robot Dynamics Using Articulated Body
InertiasÓ, The Int. Journal of Robotic Research, Vol. 2, pp. 13-30, (1983).

Featherstone, R., ÒRobot Dynamics AlgorithmsÓ, Kluwer, (1987).

Garc�a de Jal�n, J., Jim�nez, J.M., Avello, A., Mart�n, F., and Cuadrado, J., ÒReal
Time Simulation of Complex 3-D Multibody Systems with Realistic GraphicsÓ,
Advanced Research Workshop on Real Time Integration Methods for Mechanical
System Simulation, NATO, Snowbird, UTAH, August, (1989).

Haug, E.J., Computer-Aided Kinematics and Dynamics of Mechanical Systems. Volume
I: Basic Methods, Allyn and Bacon, (1989).

Jerkovsky, W., "The Structure of Multibody Dynamic Equations", Journal of
Guidance and Control, Vol. 1, pp. 173-182, (1978).

Jim�nez, J.M., "Formulaciones Cinem�ticas y Din�micas para la Simulaci�n en
Tiempo Real de Sistemas de S�lidos R�gidos", Ph.D. Thesis, University of
Navarre, San Sebasti�n, (1993).

Kim, S.S. and Vanderploeg, M.J., "A General and Efficient Method for Dynamic
Analysis of Mechanical Systems Using Velocity Transformations", A S M E
Journal of Mechanisms, Transmissions and Automation in Design, Vol. 108, 176-
182, (1986).

Luh, J.Y.S., Walker, M.W., and Paul, R.P.C., ÒOn Line Computational Scheme for
Mechanical ManipulatorsÓ, Journal of Dynamic Systems, Measurements, and
Control, ASME, Vol. 102, pp. 69-76, (1980).

Nikravesh, P.E., Computer-Aided Analysis of Mechanical Systems, Prentice-Hall,
(1988).

Rodriguez, G., Jain, A., and Kreutz, K., "A Spatial Operator Algebra for Manipulator
Modeling and Control", International Journal of Robotics Research, Vol. 10,
pp. 371-381, (1991).

References 325

Simo, J.C. and Wong, S., "Unconditionally Stable Algorithms for Rigid Body
Dynamics that Exactly Preserve Energy and Momentum", International Journal
for Numerical Methods in Engineering, Vol. 31, pp. 19-52, (1991).

Walker, M.W. and Orin, D.E., ÒEfficient Dynamic Computer Simulation of Robotic
MechanismsÓ, Journal of Dynamic Systems, Measurements, and Control, ASME,
Vol. 104, pp. 205-211, (1982).

