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5
Dynamic Analysis. Equations of Motion

This chapter deals with the direct dynamic problem which consists of determin-
ing the motion of a multibody system that results from the application of the ex-
ternal forces and/or the kinematically controlled or driven degrees of freedom. The
direct dynamic analysis is also commonly referred to as the dynamic simulation.
Its importance is steadily increasing in fields such as: automobile industry,
aerospace, robotics, machinery, biomechanics, and others. The possibility of
kinematically controlling some degrees of freedom in a dynamic problem has
many practical applications. For example, in the analysis of vehicle suspensions,
if the wheel is rigid, its center follows the trajectory determined by the rolling
surface. The dynamic problem will determine the resulting motion of all the ve-
hicle's remaining elements.

It is very important to emphasize the difference between the kinematically and
dynamically controlled degrees of freedom. In the previously stated kinematic
simulation, all the degrees of freedom were controlled kinematically; that is, the
motion of as many input elements as degrees of freedom is known. There are as
many additional kinematic or driving constraint equations such as known angles,
and known distances, as degrees of freedom. In order for the problem to be truly
dynamic, it is necessary that the number of unknown dependent variables be
greater than the total number of independent geometric and driving constraint
equations. As a result, the motion of the multibody system cannot be unequivo-
cally defined by the geometric and driving constraint equations and by the known
motion of points and vectors only. In order to determine the motion of the entire
system, it is necessary to establish the dynamic equilibrium condition that leads
to a system of second order differential equations generally called the equations of
motion.

The direct dynamic problem pursues the determination of the system's motion
during a period of time originated by known external forces and/or the kinemati-
cally driven degrees of freedom. The position of the multibody system is charac-
terized by its dependent coordinates. It is not sufficient to know the values of a
minimum set of independent coordinates, because the position is not unequivo-
cally known by simply knowing the independent coordinates. However, at the
time of formulating the equations of motion, it is possible to do it with both
dependent or independent coordinates. There is not a consensus among the ex-
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perts as to which method is the best for all cases. A method can be advantageous
over another under certain conditions and vice versa. Continuing research is be-
ing carried out to find the best possible formulation in terms of efficiency and
accuracy.

The dynamic formulation with independent coordinates calls for solving the
position problem at each stage of the integration or adopting alternative methods
that will be later explained below. In practice this is not a serious problem. As
the positions of the system corresponding to two consecutive steps of the inte-
gration are very close, the position problem converges rapidly and the problem
of multiple solutions does not present a serious practical difficulty.

We discuss in this chapter several methods concerning formulating and solv-
ing the direct dynamic problem with both dependent (Section 5.1) and indepen-
dent coordinates (Section 5.2). In many instances we include algorithms which
explain and facilitate their computer implementation. Some recent formulations
that are based on velocity transformations and the canonical equations are dis-
cussed in Sections 5.3 and 5.4, respectively.

5.1  Formulations in Dependent Coordinates

Several methods of formulating the equations of motion with dependent coordi-
nates will be developed below. In all cases, the desired end result can be obtained
by either the Lagrange's equations or the method of virtual power. Hereafter, the
vector q represents a set of n unknown dependent coordinates, m is the total
number of independent constraint equations (geometric and kinematic), and f=nÐm
is the number of dynamic degrees of freedom. The constraint conditions are writ-
ten in the following general form:

FFFF q, t  = 0 (5.1)

Let T(q, q) be the kinetic energy of the system, V(q) the potential energy and
Qex(q) the vector of generalized external forces acting along the dependent coor-
dinates q of a constrained mechanical system. The Lagrange's equations of such
systems have been derived in Chapter 4 in the form:

d
dt

 ¶L

¶q
 Ð ¶L

¶q
 + FFFF q

T
 llll  = Qex (5.2)

where L =TÐV is the Lagrangian function. The third term on the LHS of equation
(5.2) is introduced, because the coordinates q are not independent but interrelated
by means of the constraint equations. The matrix FFFFq is the Jacobian matrix of
the nonlinear constraint equations (5.1). The vector llll  in (5.2) represents the
Lagrange multipliers. With this formulation the number of unknowns has in-
creased to n+m, since not only q but also llll needs to be calculated.

As shown in Chapter 4, the kinetic energy of a multibody system can be
written as follows:
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T = 1
2

 q
T
 M q  q (5.3)

where the mass matrix is constant as long as all the bodies have at least two
points and two non-coplanar unit vectors or an equivalent structure. Otherwise,
the mass matrix is dependent on the positions q. For the general case in which
the kinetic energy depends on q, equation (5.2) becomes (See Example 4.1)

M  q + FFFF q
T
 llll  = Qex + Lq Ð M  q (5.4)

where Qex is the vector of external forces and L the Lagrangian. It may be seen
that equation (5.2) involves the time differentiation of the mass matrix which
leads in certain cases to rather involved computations.

Another way of formulating the equations of motion is by means of the
method of virtual power. It was demonstrated in Chapter 4 that the virtual power
of the forces acting on a multibody system can be written as

q
*T

 M  q Ð Q  = 0 (5.5)

where q* are the virtual velocities, which must satisfy the first derivative of the
constraint equations at a stationary time. Therefore,

FFFF q q, t  q
*
 = 0  (5.6)

It cannot be inferred from equation (5.5), that the part of the expression be-
tween parenthesis is zero. In addition to the inertia and external forces coming
from a potential, the constraint forces, such as forces at the pairs, also act on the
multibody system. Although they do not appear in a virtual power expression,
they should appear in the equilibrium equations. In order to eliminate the virtual
dependent velocities from equation (5.5), one should add to (5.5) the equation
(5.6) transposed and multiplied by a vector of m unknown coefficients llll.... This
would yield:

q
*T

 M  q Ð Q + FFFF q
T
 llll  = 0 (5.7)

As mentioned in Section 4.1, it is always possible to find m values of the
vector llll. This vector establishes the magnitude of the constraint forces; so that

M  q + FFFF q
T
 llll = Q (5.8)

where now the vector Q contains the external forces plus all the velocity-depen-
dent inertia terms obtained as explained in Chapter 4. Hence, equations (5.4) and
(5.8) are equivalent. The first term corresponds to the inertia forces; the last, to
the external forces, velocity-dependent inertia forces, and those obtained from a
potential. The intermediate term corresponds to the forces associated with the im-
posed constraints, that is, the forces necessary for the constraint equations to be
satisfied.
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5.1.1  Method of the Lagrange Multipliers

Equation (5.8) represents n equations and (n+m) unknowns: the n elements of
vector q and the m elements of vector llll. In order to have a sufficient number of
equations, it is necessary to supply m more equations. The obvious choice is to
use the algebraic constraint equations (5.1) which along with (5.8) constitute a
set of differential algebraic equations DAEs of index three (See Chapter 7). In or-
der to avoid DAEs, one can use the acceleration kinematic equations which are
obtained by differentiating the constraint equations (5.1) twice with respect to
time:

 FFFF q q = Ð FFFFt Ð FFFF q q º c (5.9)

This expression is used to define the vector c. By writing equations (5.8) and
(5.9) jointly, one obtains:

  
M  FFFF q

T

FFFF q  0
  q

llll
 = 

Q
c

 (5.10)

which is a system of (n+m) equations with (n+m) unknowns, whose matrix is
symmetrical and, in general, non-positive definite, and also very sparse in many
practical cases.

The system of equations (5.10) can be used for the simultaneous solution of
the accelerations and Lagrange multipliers. Alternatively, equation (5.8) can be
solved first to obtain an expression for the accelerations:

q = M
Ð1

 Q Ð M
Ð1

 FFFF q
T
 llll  (5.11)

which can only be used if the mass matrix is non-singular, as it will be in most
of the cases. By substituting equation (5.11) in equation (5.9), one obtains:

FFFF q M
Ð1

 FFFF q
T

 llll  =  FFFF q M
Ð1

 Q Ð  c (5.12)

from which the Lagrange multiplier vector llll can be found. In order to calculate
the accelerations, it will suffice to substitute llll in equation (5.11).

In the majority of practical cases, the direct solution of equations (5.10) is
preferable over the use of (5.11) and (5.12). The main advantage of the dynamic
formulation in dependent coordinates using Lagrange multipliers, besides the
conceptual simplicity of the method, is permitting the calculation of forces asso-
ciated with the constraints (which depend on the Lagrange multipliers) with a
minimum additional effort. The solution of (5.10) yields llll directly without the
need for a special call to an inverse dynamic module (See Chapter 6).

Numerical Implementation. It will be assumed that a numerical integration
subroutine for first order differential equations, such as those described in Chapter
7, is available. The operation of these subroutines can be summarized as follows:
given the vector of derivatives y t of the dependent variables at time t, the numeri-



160     5. Dynamic Analysis. Equations of Motion.

cal integration subroutine (n.i.s.) returns the value of the vector y at time (t+Dt).
Schematically,

y t       yt +Dt
n.i.s.

 

Therefore, following the Lagrange multiplier method, the numerical integra-
tion of the equations of motion may proceed as follows:

Algorithm 5-1

1. Start at a time t in which the position q and velocity q are known.
2. Use equations (5.10) to solve the accelerations at time t . We call this process

a function evaluation.
3. The vector y t

T º {qT, qT}t is given as input to the numerical integration sub-
routine (valid for first order differential equations), and the vector
yt +Dt

T  º {qT, qT}t +Dt  is obtained:

y t
T
 º {q

T
, q

T
}t        yt +Dt

Tn.i.s. 
 º {q

T
, qT}t +Dt 

4. Upon convergence of the n.i.s., update the time variable and go to step 2.

This numerical integration algorithm has the advantage of being much sim-
pler than those shown below corresponding to other methods. However, it may
not be the most efficient. In addition, it will be explained below that as the nu-
merical integration proceeds using this algorithm, the constraint conditions are
progressively violated leading to unacceptable results in all but very short simu-
lations.

5.1.2  Method Based on the Projection Matrix R

A second possibility of formulating the motion differential equations with depen-
dent coordinates is based on the matrix R introduced in Chapter 3. Remember
that the f=nÐm columns of the matrix R represent a basis of the nullspace of the
Jacobian FFFFq; that is, a basis of the subspace of possible motions. The matrix R
verifies the following relationship for holonomic systems:

FFFF q R = 0 (5.13)

It also directly relates the dependent and independent velocities for the case in
which there are no rheonomous constraints:

q = R z (5.14)

If in the virtual power equation (5.5) the dependent virtual velocities q* are
substituted in terms of the independent virtual velocities z*, the use of equation
(5.14) leads to

z
*T

 R
T
 M  q Ð Q  = 0 (5.15)
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Since the previous expression should be verified for any arbitrary vector of in-
dependent virtual velocities, the following must also be satisfied:

R
T
 M q = R

T
 Q (5.16)

Equation (5.16) contains (nÐm) equations with n unknowns. In order to have
as many equations as unknowns, it is necessary to complete this system with
the kinematic acceleration equations (5.9), resulting in

FFFF q

R
T
 M

 q = c

R
T
 Q

(5.17)

which is a system of n equations with n unknowns which can be easily solved for
the dependent accelerations q. The upper part of equation (5.17), corresponding to
matrix FFFF q, has been previously factored in order to calculate the matrix R.
Because of this, the system of equations can be solved with very little additional
effort. The method based on equation (5.17) is sometimes more efficient than the
one based on equations (5.10) (Unda et al. (1987)). The dynamic formulation
whose end result is equation (5.17) was originally introduced by Kamman and
Huston (1984), although they did not use a general matrix R but a set of eigen-
vectors associated with the zero eigenvalues of the matrix (FFFFq

TFFFFq).
Matrix R can be calculated by means of any of the methods explained in

Chapter 3. The simplest is the projection method (Section 5.2.3) based on the
selection of the independent coordinates as a subset of the dependent ones.

Remarks:

* The same result of equation (5.16) can be arrived at by eliminating the vector
llll in equation (5.8). By multiplying equation (5.8) by the matrix RT, we can
write

R
T
 M   q + R

T
 FFFF q

T
 llll = R

T
 Q (5.18)

but by virtue of equation (5.13), the term containing the Lagrange multipliers
can be cancelled, thus equation (5.16) is obtained.

* Equation (5.17) allows one to clearly distinguish the equations corresponding
to the kinematics (the m first ones) from the equations corresponding to the
dynamics (the nÐm last ones). Besides, system (5.17) does not explicitly con-
tain any independent coordinates; rather they are implicitly considered via the
matrix R. Each matrix R implies a choice of independent coordinates in accor-
dance with equation (5.14). The chosen set of independent coordinates must be
changed anytime there is a need to guarantee the existence and perfect condi-
tioning of the Jacobian factorization necessary to compute the matrix R.

Numerical Implementation. Similar to the case of the Lagrange multiplier
method, the numerical integration process of the equations of motion using the
matrix R may proceed as follows:



162     5. Dynamic Analysis. Equations of Motion.

Algorithm 5-2

1. Start at a time t in which the position q and velocity q, are known.
2. Form the matrix FFFFq and triangularize it with column partial pivoting. From

this triangularization, decide whether the current set of coordinates continue to
be valid (independent) to form the matrix R, or if it is necessary to change
them. In the latter case, make a new choice of independent columns by means
of a triangularization with total pivoting.

3. Form the matrix R and the product RTM.
4. Solve equation (5.17) for the dependent accelerations.
5. Obtain the vectors q and q at time (t+Dt) are obtained by numerical integra-

tion.

y t
T
 º {q

T
, q

T
}t        yt +Dt

Tn.i.s. 
 º {q

T
, qT}t +Dt 

6. Upon convergence of the n.i.s., update the time variable and go to step 2.

Similar to Algorithm 5-1, this method also requires constraint stabilization
for long simulations. This point is treated next.

5.1.3  Stabilization of the Constraint Equations

Once the position, velocity, and external forces are known, equations (5.10) and
(5.17) permit calculating the dependent accelerations of the system at a specific
time. Both equations use the kinematic acceleration equations (5.9) which are ob-
tained by differentiating the constraint equations (5.2) twice with respect to time.
This means that the following differential equation is also being integrated with
respect to time:

FFFF q, t  º FFFF q q + FFFF q q + FFFFt = 0 (5.19)

This system of differential equations has the following general solution:

FFFF q, t  = a1t + a2 (5.20)

where a1 and a2 are constant vectors that depend on the initial conditions; that is,
on the value of the constraint equations and on its first derivative with respect to
time at t=0. If the position and initial velocity satisfy the constraint equations,
both vectors a1 and a2 are null. Theoretically, equation (5.20) guarantees that the
constraint equations will be satisfied at any time. The fact of the matter is very
different.

Equation (5.19) is unstable, since for any vector a1 different from zero the
general solution given by equation (5.20) is not bounded and tends to increase
indefinitely with time. Even though the initial conditions guarantee that a1= 0,
during the course of the numerical integration, the round-off errors that appear
during the integration do not satisfy the constraint equations. The effects of these
errors increase with time, in accordance with expression (5.20). Therefore, the
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constant distances cease to be constant and the points of the same element pro-
gressively move closer to or further away from them. A similar situation hap-
pens with the other constraint equations.

This difficulty takes place during the integration of the differential equation
(5.19). For example, let's take a look at a constraint equation of constant dis-
tance between two points i and j:

(ri Ð rj)
T
 (ri Ð rj) Ð Lij

2
 = 0 (5.21)

By differentiating this equation twice with respect to time, one obtains

(ri Ð rj)
T
 (ri Ð rj) + (ri Ð rj)

T
 (ri Ð rj) = 0 (5.22)

When numerically integrating equation (5.22), one loses the information
about the distance Lij that should be maintained between both of the points. The
constant Lij disappears during the differentiating process. Thus, expression (5.22)
does not have the information corresponding to the distance that must be main-
tained, and errors accumulate on the distance between points i and j. The same
situation happens with all the other constraint equations, which at the time of
differentiation lose the information carried by the constant terms.

The instability during the numeric integration of kinematic acceleration equa-
tions ensures that Algorithms 5-1 and 5-2 may not be used directly to obtain the
solution of the dynamic simulation problem. Two different methods have been
proposed for overcoming this difficulty and are stated below.

5.1.3.1  Integration of a Mixed System of Differential and Algebraic Equations.

The purpose of this method is to jointly solve the system of nonlinear algebraic
equations (5.1) and differential equations (5.10) or (5.17). Thus, the constraint
equations, and not only their second derivatives, are satisfied at any given time.
Refer to Chapter 7 for a description on the general solution of differential alge-
braic equations or DAEs. There are numerical integration methods for mixed sys-
tems of differential equations that permit adding algebraic equations. However,
they are not the most numerically efficient and are not free from stability prob-
lems in the simulation of mechanical systems (See Chapter 7 and Steigerwald
(1990)).

5.1.3.2  Baumgarte Stabilization

The aim of the Baumgarte stabilization method (Baumgarte (1972)) is to replace
the differential constraint equations (5.19) by the following system:

FFFF  + 2a FFFF + b 2
 FFFF  = 0 (5.23)

where a and b are appropriately chosen constants. The general solution to this
differential equation is

FFFF = a1 e
s1t + a2 es2t (5.24)
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where a1 and a2 are constant vectors that depend on the initial conditions, and s1
and s2 are the roots of the characteristic equation, defined by the expression:

s1, s2 = Ð a ± a 2 Ð b 2
(5.25)

If a and b are positive constants, the two roots s1 and s2 have a real negative
part which guarantees the stability of the general solution (5.24) in contrast with
that in (5.20). The initial position and velocity conditions of the multibody sys-
tem should guarantee that the vectors a1 and a2 are zero. If the numerical round-
ing-off errors alter this condition, the real negative part of the exponential terms
damps out the possible errors occurring during the integration process. The con-
stants a and b are usually equal to one another with values between 1 and 20,
and it appears that the behavior of the method does not significantly depend on
these values. Chang and Nikravesh (1985), and Bae and Yang (1990) proposed
different methods for optimizing this choice.

By using equation (5.23) instead of equation (5.9), the differential equations of
motion (5.10) and (5.17) are respectively transformed into:

M  FFFF q
T

FFFF q 0
  q

llll
 = 

Q
g

  (5.26)

and

FFFF q

R
T
 M

 q = g

R
T
 Q

(5.27)

where

g = Ð FFFFt Ð FFFF q q Ð2a FFFF q q + FFFFt  Ð b 2
 FFFF  (5.28)

Nikravesh (1984) has studied comparatively the numerical integration of the
equations of motion with dependent coordinates without stabilization, with
Baumgarte stabilization, and integrating mixed systems of differential and alge-
braic equations. His conclusions indicate that the Baumgarte stabilization is
twice as efficient as the integration of the mixed systems, even though not all
the problems examined were satisfactorily solved with the said stabilization
method. On the other hand, the direct integration of equations (5.10) or (5.17)
produced unacceptable results. The Baumgarte stabilization is general, simple,
and numerically efficient. Its computational cost is a small fraction of the total
required. However, it does not solve all possible instabilities, such as near kine-
matic singular configurations (Haug (1989)). This aspect works in favor of other
methods with dependent and independent coordinates that will be studied below.

5.1.4  Penalty Formulations

As shown in Section 5.1.1, the Lagrange multipliers technique allows for the so-
lution of the dynamic problem at the expense of solving for an augmented set of
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(n+m) unknowns: q plus llll. In this section we will present an alternative penalty
formulation proposed by Bayo et al. (1988) that eliminates the Lagrange multi-
pliers from the equations of motion and leads to a set of n ordinary differential
equations with q as the only unknowns. In essence, this method directly incorpo-
rates the constraint equations as a dynamical system, penalized by a large factor,
into the equations of motions. The larger the penalty factor the better the con-
straints will be achieved at the cost of introducing some numerical ill-condition-
ing. We will show next how this penalty formulation can be applied to holo-
nomic and non-holonomic constraint conditions and how to avoid the numerical
problems that may arise in the use of penalty factors. Theoretical studies of its
convergence and stability have been carried out by Kurdila and Narcowich (1992).
This penalty method has also been successfully extended to real time dynamics
within the context of fully Cartesian coordinates in Bayo et al. (1991). This will
be explained in Chapter 8.

Holonomic Systems. A holonomic system is characterized by constraint
equations of the form given in (5.2) which represent a set of nonlinear algebraic
equations in the coordinates and the time variable. The penalty formulation is de-
rived by adding three terms to the Lagrangian: These terms include a fictitious
potential:

V
*
 = å

k

 1
2

 a k  wk
2  Fk

2
  º  1

2
 FFFF T

 aaaa  WWWW 2
 FFFF  (5.29)

a set of Rayleigh's dissipative forces:

Gk = Ð  2 a k  wk mk 
df k

dt
 º Ð 2 aaaa  WWWW  mmmm  FFFF  (5.30)

and a fictitious kinetic energy term:

´ T
*
 = å

k

 1
2

 ak dF k

dt

2

 º  1
2

 FFFF
T
 aaaa  FFFF  (5.31)

The a k are very large real values (penalty numbers), and wk and mk represent
the natural frequency and the damping ratio of the penalty system (mass, dash-
pot, and spring) corresponding to the constraint Fk=0. Matrices aaaa, WWWW and mmmm are
(m´m) diagonal matrices that contain the values of the penalty numbers, the nat-
ural frequencies, and the damping ratios of the penalty systems assigned to each
constraint condition. If the same values are used for each constraint, these matri-
ces become identity matrices multiplied by the respective penalty numbers. Note
that in equations (5.29) through (5.31), we have used both index as well as ma-
trix notation, hoping that this will lead to a better understanding of the physical
significance of the different terms. In the following discussion, we will only use
the matrix form in order to be consistent with the notation used so far in this
book.

The differentiation of the new penalty terms that form the Lagrangian term
L*=T*ÐV* leads to
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¶L
*

¶q
 = FFFF q

T
 aaaa  FFFF  Ð FFFF q

T
 aaaa  WWWW 2

 FFFF  (5.32)

¶L
*

¶q
 = FFFFq

T
 aaaa  FFFF  (5.33)

d
dt

 ¶L
*

¶q
 = FFFFq

T
 aaaa  FFFF  +  FFFFq

T
 aaaa  FFFF  = FFFF q

T
 aaaa  FFFF  +  FFFF q

T
 aaaa  FFFF  (5.34)

where the easily verifiable relation FFFFq
T
 = FFFF q

T
  is used.

The work done by the fictitious Rayleigh forces is

dWR = Ð 2 dFFFF T
 aaaa  WWWW  mmmm  FFFF  = Ð 2 dqT FFFF q

T
 aaaa  WWWW  mmmm  FFFF (5.35)

and, therefore, the final expression obtained by the application of the Lagrange's
equations is

M q + FFFF q
T
 aaaa  FFFF  + 2 WWWW  mmmm  FFFF  + WWWW 2

 FFFF  = Q (5.36)

where M and Q=Qex+LqÐMq are the mass matrix and the force vector corre-
sponding to the system without constraints.

Remark: The second term in the LHS of equation (5.36) represents the forces that
are generated by the penalty system when the constraints FFFF, FFFF, and FFFF are vio-
lated. The virtual power method leads to this result directly without the need of
differentiation, as is the case with the Lagrange's equations. By merely comparing
equations (5.36) with (5.4), we may see that (aaaaFFFF+2WWWW mmmmFFFF+WWWW 2FFFF) is an approxi-
mation to the true Lagrange multipliers llll. The pre-multiplication by FFFF q

T projects
these forces unto the space of the dependent coordinates.

Substituting for FFFF with values from equation (5.9) the following final result
is obtained:

( MMMM    +     FFFFq
T

 aaaa  FFFF q )     q = Q Ð     FFFFq
T     aaaa    ( FFFF q q +  FFFFt    +     2  WWWW  mmmm  FFFF    +     WWWW2

 FFFF ) (5.37)

It has been demonstrated (Oden (1983)) that the solution of the modified prob-
lem coincides with that of the original problem provided that a k® ¥ .
Numerically, this condition is achieved by merely using large penalty factors.
These in turn may produce numerical ill conditioning which may be avoided by
the improved technique described below. For double precision arithmetic, a factor
of 107 times the largest term of the mass matrix gives excellent results. The co-
efficients w and m may have a stability effect similar to that produced by the a
and b coefficients of the Baumgarte constraint stabilization method explained
above. However, the penalty formulation of equation (5.37) does not fail near
kinematic singular configurations or with redundant constraints, as the Baum-
garte stabilization does.
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Non-holonomic Systems. The penalty formulation also allows one to in-
troduce, with no difficulty, non-holonomic constraints. The general form of a
non-holonomic constraint is

F k(qj, qj, t) = 0 (5.38)

Non-holonomic constraints conditions for multibody systems typically take
the form:

FFFF  = A(q, t) q +  B(q, t) (5.39)

The classical Lagrange multiplier approach leads to the following equations of
motion (Goldstein (1980)):

 M q +  A
T
 llll  = Q (5.40)

Considering the penalty formulation, we introduce as for the holonomic sys-
tems a set of fictitious Rayleigh's dissipative forces that are proportional to the
velocities:

Gk
*
 = Ð a k  mk fk º Ð aaaa  mmmm  FFFF (5.41)

and of inertia forces:

Ik
*
 = Ð ak fk º Ð aaaa  FFFF  (5.42)

The projection of the forces acting on the constraints over the space of depen-
dent coordinates is given by

A
T
 aaaa  (FFFF  +  mmmm  FFFF) (5.43)

and the application of the virtual power method directly leads to

q*T M q Ð  Q +  A
T

 aaaa (FFFF +  mmmm FFFF)  = 0  (5.44)

Since the penalty formulation makes the problem become unconstrained, the
virtual velocities may be arbitrarily selected. The expression between brackets
vanishes, consequently,

 M q +  A
T
 aaaa  (FFFF  +  mmmm  FFFF ) = Q (5.45)

Knowing that

FFFF(q, q, t) = FFFF q q +  FFFFq  q +  FFFFt (5.46)

equation (5.45) becomes

( MMMM    +     A T
 aaaa  A )     q = Q Ð     A T     aaaa (A q +  B +  mmmm FFFF ) 

(5.47)

As in the holonomic case, the diagonal matrix aaaa    can be substituted by a con-
stant that multiplies the identity matrix, if the same penalty number is used for
all of the constraints.
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Augmented Lagrangian Formulation. Equations (5.37) and (5.47) form
the modified Lagrange's equations that are obtained by virtue of a penalty formu-
lation. Penalty methods bring forth the problem of choosing the right penalty
number. While large penalty values will ensure convergence to the constraint
within a tight tolerance, those values may also lead to numerical conditioning
problems and develop round-off errors. It is therefore important that the analyst be
supplied with a method that converges, regardless of the size of the penalty val-
ues, to the right solution within specified tolerances in the constraints. This
method will have all the possible advantages of a reduced number of equations and
have no need for very large penalty values to assure convergence.

To this end, we can extend the augmented Lagrangian method commonly used
in optimization analysis (Vanderplaats (1984)) to improve the numerical condi-
tioning of the proposed penalty equations. Let us consider again the classical
Lagrange multipliers method as stated by equation (5.8). This method, along
with the constraints (5.1), forms a system of DAEs whose solution will yield
the values of the n generalized coordinates qj as well as the m Lagrange multipli-
ers lk. Instead of following this approach, we can modify equation (5.8) by
adding the corresponding penalty terms, whose values will be zero if the con-
straints are satisfied. Therefore

M q + FFFF q
T

 aaaa  FFFF  +  2  WWWW  mmmm FFFF  +  WWWW 2
 FFFF  +  FFFF q

T
 llll*

 = Q (5.48)

This new equation can be viewed as a penalty method to which the Lagrange
multipliers are added. In the limit, the constraint conditions are satisfied; thus
llll=llll* and equations (5.8) and (5.48) become totally equivalent except for round-
off errors induced by the penalty parameters and finite machine precision. In
(5.48) the Lagrange multipliers llll* play the role of correcting terms.

By merely comparing equations (5.8) and (5.48), it can be inferred that

llll  @ llll *
 +  aaaa  FFFF  +  2  WWWW  mmmm FFFF  +  WWWW 2

 FFFF  (5.49)

We are seeking the solution of (5.48) without having to use the algebraic
constraint equations (5.1). This requires that the correct values of llll* be known,
so that they can be inserted in (5.49). Since those values are not known in ad-
vance, there is a need to set up an iterative process that calculates the unknown
multipliers llll*. The iteration is easily established by taking advantage of equa-
tion (5.49):

llll i+1 = llll i +  aaaa  FFFF  +  2  WWWW  mmmm  FFFF  +  WWWW 2
 FFFF i+ 1

i = 0, 1, 2, ....
(5.50)

with llll0
*
=0 for the first iteration. Equation (5.50) physically represents the intro-

duction at iteration i+1 of forces that tend to compensate the fact that the con-
straints are not exactly zero. It becomes obvious now that the penalty number
does not need to be very large, since the resulting error in the constraint equations
will be eliminated by the Lagrange's terms during the iteration procedure. The
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generic penalty method corresponds to the augmented Lagrangian method in
which the iteration process is carried out only once.

The matrix formulation of (5.48), including the iterative process defined in
(5.50), is given by the following expression:

MMMM    +     FFFFq
T

 aaaa  FFFF q     qi+1 =

= M q i Ð     FFFFq
T     aaaa    FFFF q q +  FFFF t     +     2  WWWW  mmmm  FFFF    +     WWWW2

 FFFF
 i = 0, 1, 2, ...

(5.51)

with M q0 = Q for the initial iteration. The subscript i represents the iteration
number.

This improved formulation for the non-holonomic case leads to an iterative
procedure as given by the following equation:

MMMM    +     A T aaaa  A     qi+1 = M q i Ð     A T     aaaa    A q +  B +  mmmm  FFFF  
i = 0, 1, 2, ...

(5.52)

with again M q0 = Q for the initial iteration.
At first, this procedure might seem to be at a disadvantage since an iteration

process and thus extra computation are required. However, the extra numerical ef-
fort is practically insignificant, since an iterative procedure is usually necessary
to solve a system of nonlinear differential equations. A major advantage obtained
in return for this additional computation is that the analyst does not have to be
concerned with the value of the penalty number that simultaneously assures con-
vergence and avoids round-off errors. The numerical integration of the equations
of motion using the penalty formulation may proceed as follows:

Algorithm 5-3

1. Start at a time t, when the position q and velocity q  are known.
2. Use equation (5.37) in holonomic systems, or (5.47) in non-holonomic sys-

tems, to solve for the accelerations q at time t. If the augmented Lagrangian is
desired, then use equations (5.52) and (5.53) for holonomic and non-holonomic
systems, respectively.

3. Obtain the vectors q and q at time (t+Dt) by numerical integration:

y t
T
 º {q

T
, q

T
}t        yt +Dt

Tn.i.s. 
 º {q

T
, qT}t +Dt  (5.53)

4. Upon convergence of the n.i.s., update the time variable and go to step 2.

This numerical integration algorithm has the advantage of solving a set of n
equations as compared to (n+m) needed by the Lagrange multiplier method.
Constraint stabilization is implicitly considered within the algorithm and is im-
plemented more simply than the methods that use independent coordinates which
are shown in the sequel. An efficient numerical implementation of this penalty
method, which is more suitable for real time applications, has been proposed by
Bayo et al. (1991) and will be explained in detail in Chapter 8.
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Table 5.1. Maximum constraint errors for different penalty values.

Number of iterations

0 1 2

Penalty time error time error time error

101 10.5 0.7 10Ð1 12.8 0.7 10Ð2 14.1 0.9 10Ð3

103 11.7 0.7 10Ð3 13.3 0.6 10Ð5 14.6 0.6 10Ð5

105 11.7 0.1 10Ð4 13.3 0.6 10Ð5 14.6 0.6 10Ð5

107 11.7 0.6 10Ð5 13.3 0.6 10Ð5 14.6 0.6 10Ð5

109 11.7 0.6 10Ð5 13.3 0.6 10Ð5 14.6 0.6 10Ð5

1011 17.3 0.1 10Ð4 19.1 0.9 10Ð5 21.9 0.2 10Ð-4

Example 5.1

Given the results of a numerical simulation of the motion of a double pendulum
moving in a vertical plane under gravitational forces. The pendulum has two ele-
ments of unit mass and length. Four natural coordinates with two constraints con-
ditions are used to model the system. We use the penalty-augmented Lagrangian
method with coefficients W and m equal to 10 and 1, respectively. These provide
critical damping in the stabilization process. Table 5.1 contains a comparative
study of the resulting maximum constraint errors and CPU times in seconds ob-
tained, using different penalty numbers and 0, 1 and 2 iterations. In all the cases,
the integration is performed using the subroutine DGEAR (Gear (1971)) with an er-
ror tolerance equal to 10Ð4. It may be seen how the use of only one iteration con-
siderably widens the range of acceptable penalty values at practically no addi-
tional computational cost.

5.2  Formulations in Independent Coordinates

Some of the methods used to formulate and integrate the motion differential equa-
tions in independent coordinates will be presented below. One advantage of this
type of coordinates is an important reduction in the number of equations to be in-
tegrated. Most important is the disappearance of the instability problem in the in-
tegration of the constraint equations using ODE solvers. However, this has a
price in terms of computational effort since the position and velocity problems
need to be solved after the function evaluations. Some of the numerical integra-
tion algorithms studied in Chapter 7, and in particular the more stable implicit
algorithms are difficult to implement. In addition, the formulation and implemen-
tation of these methods become more involved than those which use dependent
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Figure 5.1.  Independent velocity in a four-bar mechanism.
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x1

Figure 5.2.  Need to change the independent velocity in a four-bar mechanism.

coordinates. One important point is the choice of the right set of independent co-
ordinates. This point will be studied in greater detail next.

5.2.1  Determination of Independent Coordinates

This is a point of transcendental importance. The independent velocities normally
are given by the projection of the dependent velocities q on certain vectors defined
by the rows of a constant matrix B (See Section 3.5) as:

z = B q (5.54)

The need to suitably select the independent coordinates can be illustrated from
the mechanical point of view with some very simple mechanisms. For example,
in the four-bar mechanism of Figure 5.1, the velocity x1 perfectly defines all the
mechanism's velocities. However, in the quadrilateral of Figure 5.2, this coordi-
nate is not adequate, since in no way does it determine the velocity of point 2. In
fact, at the position of Figure 5.2, x1 will always be zero.

Figures 5.3 and 5.4 show a mechanism with five bars at two positions. At
one of these the selected coordinates are adequate, but at the other they are not.
When bars 2 and 3 are parallel, bars 3 and 4 have the possibility of being jointly
moved as a rigid body. This motion is not determined by angles y1 and y2.

The examples mentioned should be sufficient for understanding: first, no sys-
tem of independent coordinates is adequate for the entire motion of the system;
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Figure 5.3.  Adequate set of independent
coordinates in a five-bar mechanism.

Figure 5.4.  Inadequate independent
coordinates in a five-bar mechanism.

and secondly, that a particular set of independent coordinates may be the most ad-
equate at a certain position of the mechanism but not at another. Therefore, one
must establish a double actuation procedure. On one hand a method must be de-
veloped that permits checking when a set of independent coordinates is becoming
inadequate. On the other hand, it is necessary to establish a method for finding
the most adequate new set of independent coordinates. Fortunately, there are
mathematical properties of the Jacobian matrix FFFFq that permit the solution of
the two problems satisfactorily. These properties will be seen later in connection
with the specific methods of formulating and solving the dynamic problem with
independent coordinates.

One last important point is that normally the numerical integration subrou-
tines of ordinary differential equations are based on multistep methods (Shampine
and Gordon (1975); Gear (1971)). These methods are very efficient, but they have
certain limitations. They require special techniques for starting the integration
process, and they are long and drawn out. Since it is necessary to change each
time the independent coordinates, the numerical integration must be restarted
again. One must carry out the minimum possible number of coordinate changes.
On the other hand, when some determined coordinates start to be inadequate, the
integration process becomes much slower. It is necessary to arrive at a compro-
mise solution, therefore, by making the minimum number of coordinate changes
that guarantee quick and accurate numerical integration. Sometimes, the speed of
the numerical integration can be utilized as the criteria for the change of indepen-
dent coordinates, when subroutines with automatic step size control are used.

The most important numerical integration methods for the differential equa-
tions of motion in independent coordinates are described next.
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5.2.2  Extraction Methods (Coordinate Partitioning)

This method, proposed by Wehage and Haug (1982), consists of finding the de-
pendent accelerations q by means of equations (5.10) or (5.17)Only some of the
vector's elements are integrated, specifically, those corresponding to the indepen-
dent coordinates. Wehage and Haug have called this technique the coordinate
partitioning method.

In order to choose an independent set of coordinates from vector q, it should
be remembered how the numerical integration subroutine behaves in this case.
Consider the vector q and a partition of dependent and independent coordinates as
follows:

qT = {qd
T, qi

T} (5.55)

where there are m dependent coordinates and (f=nÐm) independent coordinates.
The numerical integration subroutine is applied to only the independent coor-

dinates as follows:

y t
T
 º {qi

T
, qi

T
}t        yt +Dt

Tn.i.s. 
 º {qi

T
, qi

T}t +Dt (5.56)

Since only the independent coordinates and velocities at time (t+Dt) are
known, it is necessary to calculate the remaining coordinates and velocities. This
is done by solving the position problem to calculate qd in terms of qi after each
function evaluation, and doing the same for the velocities. The latter requires the
solution of the following set of linear equations which are the partitioned con-
straint equations for velocities:

FFFF q
d 

 FFFF q
i   qd

qi

 = b (5.57)

where the partition carried out on the vector q leads to a similar partition on the
Jacobian matrix FFFFq. In order to calculate the dependent variables, the inverse of
matrix FFFF q

d  must exist. During the Gauss triangularization process of this matrix
with column pivoting to maintain the previously determined partition, all the
pivots must be sufficiently different from zero. The fact that one or more of the
pivots of FFFF q

d  tend to zero, means that the current set of independent coordinates
are becoming inadequate. More specifically, the dependent velocity corresponding
to the column in which the pivot tends towards zero appears, must now be taken
as a new independent coordinate.

When a system of independent coordinates becomes inappropriate in actual
practice, rather than substituting one coordinate for another, it is recommended
that one choose a new complete system of independent coordinates. This is done
by carrying out the factorization of FFFFq with total pivoting. The (nÐm) columns
in which the m pivots have not appeared will determine the coordinates that
should be chosen as independent ones.

Although Gauss total pivoting is neither the only nor the most reliable tech-
nique that may be used for determining a decomposition of vector q into depen-
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dent and independent coordinates, it is undoubtedly the most economical. Mani et
al. (1985) proposed the Singular Value decomposition (SV) and Kim and
Vanderploeg (1986b) the QR decomposition. Both are, without a doubt, more re-
liable than the Gauss total pivoting method, but require considerably more calcu-
lation effort. These techniques can be used perhaps to choose a new set of inde-
pendent coordinates at specific positions, because this process will only need to
be carried out very few times in all the simulation. However, the QR or SV de-
compositions are completely unsuitable to detect the need for change in the set
of independent coordinates. Since the detection must be carried out at each step of
the numerical integration, these decompositions would unacceptably delay the in-
tegration process.

This numerical integration process requires solving the position problem and
performing the velocity analysis at each iteration. The latter does not constitute
an important difficulty. However, the position problem does, because it requires
an iterative solution that consumes an important amount of computational time.
For this reason, Paul (1975) suggested the integration of the following extended
set of differential equations:

y t
T
 º {qi

T
, q

T
}t        yt +Dt

Tn.i.s. 
 º {qi

T
, qT}t +Dt (5.58)

By integrating all the velocities, and not only the independent ones, the new
position of the multibody system is directly obtained as a result of the numerical
integration. With numerical integration, the constraint equation stabilization
problem is not so critical. The equation that is integrated is that of the velocities
instead of accelerations. The general solution of the first derivative of the con-
straint equations is simply a constant vector. Therefore, round-off errors do not
tend to increase with time, although they accumulate and slow down the integra-
tion.

Numerical integration of the extended differential equations system (5.58) is
frequently used. Generally speaking it is more efficient than that of system
(5.56) which, as mentioned above, entails a repeated solution of the position and
velocity problem at each step. For long simulations, if the use of (5.58) leads to
an accumulation of constraint errors which may even lead to numerical stiffness
in the solution of equations, then the position problem is solved and the integra-
tion proceeds. Park and Haug (1986) proposed a hybrid method that combines the
coordinate partitioning and Baumgarte stabilization of the constraints. Thus,
when the errors in the constraint exceed a specified tolerance, the accelerations are
calculated with equation (5.26) instead of (5.10). When the Baumgarte stabiliza-
tion fails in the neighborhood of a kinematically singular configuration, the pro-
posed method reverts to pure coordinate partitioning with the solution of the po-
sition and velocity problems.

To summarize, the extraction method calculates all the dependent accelerations
with the same formulae used in the methods based on dependent coordinates. It
then integrates only one subset of the accelerations chosen by means of Gauss
triangularization with total pivoting or by the QR or SV decomposition. To de-
termine when an independent coordinates system starts becoming inadequate, the
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best and most economical method is to check the pivots during the triangulariza-
tion with column pivoting. This should be done at each step of the numerical in-
tegration.

5.2.3  Methods Based on the Projection Matrix R

One should recall the velocity equation, obtained after differentiating the con-
straint equations with respect to time:

FFFF q q = Ð FFFFt º b (5.59)

Likewise one should consider again equation (5.54), in which the independent
velocities z are defined as the projection of vector q on the rows of a constant
matrix B of size ((nÐm)´n). The rows of matrix B satisfy the condition of being
linearly independent from one another and with respect to the rows of matrix FFFFq.
By jointly writing the expressions (5.59) and (5.54) one obtains

 FFFF q 

B
 q = b

z
(5.60)

The matrix on the LHS of this expression is invertible and consequently,

q = 
 FFFF q 

B

Ð1

 b
z

 º S     R   b
z

 = S  b + R  z (5.61)

where S and R are (n´m) and (n´(nÐm)) matrices, respectively. It is easy to
demonstrate that term Rz represents the general solution of the homogeneous ve-
locity equation, and that the term Sb represents a particular solution of the com-
plete equation. This is a particular solution of the velocity equation for the case
in which there are rheonomous constraints.

By differentiating equations (5.59) and (5.54) with respect to time, one ob-
tains

FFFF q q = Ð FFFFt Ð FFFF q q º c (5.62)

B q = z (5.63)

By jointly expressing these equations:

 
 FFFF q 

B
 q = c

z
 (5.64)

Solving for q and introducing the matrices S and R defined in (5.61), we ob-
tain

q = 
 FFFF q 

B

Ð1

 c
z

 = S  c + R  z (5.65)

It shall be remembered that matrix R must be explicitly calculated with nÐm
forward and backward substitutions, starting from the leading matrix of (5.60)
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factored by means of Gauss elimination. However, it is important to note that
the matrix S never needs to be explicitly calculated. The terms (Sb) and (Sc)
are, respectively, q and q, when z = 0 and z = 0. These terms products can be di-
rectly calculated from expressions (5.60) and (5.64).

Eq. (5.16) represents the equations of motion with dependent coordinates:

R
T
 M  q = R

T
 Q (5.66)

By introducing in this equation the equation (5.65) for the dependent accelera-
tions in terms of the independent accelerations, we obtain

R
T
 M  R  z = R

T
 Q Ð R

T
 M  S  c (5.67)

which constitutes the equations of motion in terms of independent coordinates.
The derivation process that starts with equation (5.59) and ends in (5.67) leads to
this general form of the equations of motion in independent coordinates, which
was first introduced in this context by Serna et al. (1982). Equation (5.67) repre-
sents a general matrix transformation from the vector spaces of dependent acceler-
ations and forces to the vector space of independent accelerations and forces.

This formulation is valid for both scleronomous and rheonomous constraint
equations. In addition, this layout is valid, irrespective of the matrix B chosen in
equation (5.54), provided that the conditions of being constant and of having its
rows linearly independent from one another and with respect to the rows of FFFFq
are satisfied. The matrix B can be chosen in two different ways as explained
next.

Boolean matrix. The matrix B is formed by a set of ones and zeros that extracts
(nÐm) components of q as independent coordinates z. By partitioning equation
(5.60) in a similar way to that performed in equation (5.57), one obtains

B = 0     I (5.68)

and

FFFF q
d

 FFFF q
i

0 I
 qd

qi

 = b
z

  (5.69)

One should keep in mind that the matrix FFFF q
d  should be invertible in order to

express the dependent velocities in terms of the independent ones. All the pivots
must be sufficiently different from zero. In this way it is assured that the chosen
rows of B  are independent from those of FFFF q. If during the motion of a
multibody system one of the pivots of FFFF q

d  becomes much smaller than the
others, this independence is gradually lost. It is then necessary to choose new
independent coordinates by means of a total pivoting process.

This is the simplest method of all those formulated in independent coordi-
nates. In actual practice this method is almost always the most efficient one.

SV and QR Decompositions. As explained in Chapter 3, these methods take
rows of matrix B as an orthogonal basis of the nullspace of FFFFq, calculated at a
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previous position of the multibody system by means of the singular value (SV)
or QR decompositions. Both lead to similar results. The SVD is more stable in
poor numerically conditioned problems. However, the QR decomposition is nu-
merically more efficient, since it is a direct process that does not need iterations.

The matrix R is also calculated starting from equation (5.60). As before, the
matrix B is given by an orthonormal basis of the nullspace at a previous posi-
tion. Since the row subspace of matrix FFFFq is orthogonal to this nullspace, it is
expected that the rows of FFFFq are independent from the rows of B for a wide range
of the motion. Since matrix B is kept constant, one may arrive at a position of
the multibody system in which this independence is lost or deteriorated.
Therefore, it will be necessary to change the independent coordinates by carrying
out a new SV or QR decomposition. The most efficient method to find whether
the rows of B are becoming linearly dependent is through the monitoring of the
pivots during the Gauss triangularization process of equation (5.60).

Even though this method may occasionally require fewer changes of indepen-
dent coordinates than the Boolean matrix method, the latter is simpler and nu-
merically more efficient. It is not necessary to carry out additional operations to
complete on B the Gauss triangularization of matrix FFFFq.

Numerical integration algorithm with projection matrices R. Of all the methods
based on the projection matrix R shown in Chapter 3, the one based on the
Boolean matrix B with rheonomous constraints will be chosen in order to pre-
sent the corresponding numerical integration algorithm. The possibility exists of
solving the position problem at each step, or integrating an enlarged system of
differential equations. This second option is presented first.

Algorithm 5-4

1. Start at a time when the position q and velocities z are known.
2. Calculate a new matrix FFFFq. Triangularize this matrix with column pivoting,

and verify that all the pivots are sufficiently different from zero, so that the in-
dependent coordinates continue to be valid. Otherwise, carry out a new triangu-
larization with total pivoting and choose a new set of independent coordinates.
In addition, restart the numerical integration process if using a multistep
method.

3. Form matrix R from equation (5.60). Note that the triangularization of FFFF q
has been carried out already in step 2.

4. Calculate the new dependent velocities q by means of equation (5.61).
5. Form the matrix products (RTM), (RTMR), and (RTQ).
6. Calculate the terms (Sb) and (Sc) by making z = 0 and z = 0 in equations

(5.61) and (5.65), respectively.
7. Obtain the independent acceleration vector z from equation (5.67).
8. Obtain the vectors q and z at time (t+Dt) by numerical integration:

y t
T
 º {z

T
, q

T
}t        yt +Dt

Tn.i.s. 
 º {z

T
, qT}t +Dt (5.70)

9. Upon convergence of the n.i.s. update the time variable and go to step 2.
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This algorithm constitutes an efficient and general purpose method of solving
the forward dynamics. However, it is more difficult to implement than those
based on dependent coordinates. By means of small modifications, this algorithm
can be easily adapted to the other theoretically described projection methods.
Since the integration is carried out using {zT, qT}, errors in the constraint condi-
tions may accumulate with the effect of slowing down the integration process.
For long simulations and in order to eliminate this problem, it is necessary to
solve the position problem either after a specified number of time steps or after
checking at step 8 the fulfillment of the position constraint equations. In what
follows we also give an algorithm based on {zT, zT} which requires the solution
of the position and velocity problems in each iteration:

Algorithm 5-5

1. Start at a time in which the independent coordinates z and z are known.
2. Solve the position and velocity problems to obtain q and q. Simultaneously,

do the column pivoting on the matrix FFFFq to check the validity of the current
set of independent coordinates.

3. Form R from equation (5.60). Note that FFFFq has already been triangularized.
4. Form the matrix products (RTM), (RTMR), and (RTM).
5. Calculate the terms (Sb) and (Sc) by making z = 0 and z = 0 in equations

(5.61) and (5.65), respectively.
6. Obtain the independent acceleration z from equation (5.67).
7. Obtain the vectors z and z at time (t+Dt) by the numerical integration:

y t
T
 º {z

T
, z

T
}t        yt +Dt

Tn.i.s. 
 º {z

T
, zT}t +Dt 

9. Upon convergence of the n.i.s., update the time variable and go to step 2.

5.2.4  Comparative Remarks

The penalty formulation characterized by equation (5.37) has the advantage over
the formulations in independent coordinates, in that the appearance or disappear-
ance of constraints can be accommodated automatically without changing the co-
ordinates. This in turn avoids the restarting procedure of the numerical integrator.
The penalty formulation is also more suitable when the multibody system goes
through a singular or bifurcation position. In these cases the Jacobian matrix
changes its rank, and the use of independent coordinates requires a sudden change
of coordinates. Unless special provisions are made, the formulation in indepen-
dent coordinates and even the Lagrange's equations in dependent coordinates tends
to either crash the simulation or introduce sudden large errors. However, with the
penalty formulation, the term (M +  FFFF q

T  aaaa  FFFF q) of equation (5.37) is free of singu-
larities and the integration becomes be very stable under these circumstances.
This fact also makes the penalty formulation go through kinematic singular posi-
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tions without problems, an advantage not shared by the classical Lagrange's
method with Baumgarte stabilization (See Bayo and Avello (1993)).

The penalty formulation of Algorithm 5-3 will tend to be more efficient nu-
merically than the Algorithms 5-4 and 5-5 in independent coordinates, because in
Algorithm 5-3 the major computational burden is the formation, triangulariza-
tion, and one forward reduction and backsubstitution of (M +  FFFF q

T  aaaa  FFFF q). Since
the mass matrix does not modify the sparsity of the product (FFFF q

T FFFF q), this opera-
tion is less costly than the formation, triangularization, and f forward reductions
and backsubstitutions of (FFFF q

T FFFF q) required for the formation of the matrix R in a
single step of Algorithms 5-4 and 5-5. These algorithms also include the forma-
tion and triangularization of (RTMR) which represents an additional computa-
tional burden of these methods.

5.3  Formulations Based on Velocity Transformations

In Section 5.2.3, a family of methods for transforming the dynamic equations
from dependent to independent coordinates was presented. Equation (5.61), which
defines the relation between dependent q and independent velocities z, is really a
particular case of the velocity transformation equations that can be introduced in
the dynamic formulation. Equation (5.65) is the corresponding relation for accel-
erations. In this section, it will be shown how some velocity transformations can
be used to improve the efficiency of the dynamic formulations described previ-
ously. These formulations, initially introduced by Jerkovsky (1978) and subse-
quently extended by other authors, such as: Kim and Vanderploeg (1986b),
Nikravesh and Gim (1989), Garc�a de Jal�n et al. (1990), and Bae and Won (1990)
can be extremely efficient and simple to implement. However, they may have
been presented in the literature in a rather involved way. We present these ideas in
this section in a simple and yet rigorous manner, so that one can understand them
easily. The concepts presented hereafter are independent of the coordinates used be
they natural, reference points, or others. The efficiency of these formulations
makes them be one of the best candidates for real time simulation. There will be
a return to this topic in Chapter 8.

The numerical complexity in equation (5.67) comes from a double fact:

1) The computation of the matrix R , that requires the factorization of the
Jacobian matrix and as many forward and backward substitutions as columns
that this matrix has; and,

2) The products of matrices that appear in equation (5.67), of which the most
important and expensive to compute is the one on the left-hand side.

The relative importance of these computational tasks is problem dependent.
Experience shows that very often each one of these two operations consisting of
the computation of R and products of matrices requires around 40% of the total
computational cost involved in the numerical integration.
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Figure 5.5.  Tree-type planar multibody system.

The purpose of this section is to introduce velocity transformations similar to
those of expressions (5.61) and (5.65) but with the difference of being particu-
larly favorable in the sense of completely avoiding the Jacobian triangulariza-
tion; hence allowing for an easy and efficient computation of the matrix R and
term (Sc). It can be seen that these velocity transformations will not necessarily
represent transformations between vectors of dependent and independent velocities
but transformations between different or alternative sets of dependent velocities,
that are particularly suitable from the point of view of improved numerical effi-
ciency. Open- and closed-chain configurations are considered separately.

5.3.1  Open-Chain Multibody Systems

Multibody systems that have open kinematic chain or tree configuration are most
appropriate to introduce the velocity transformations described in the previous
section. In the sequel, the matrix R that relates the natural (or mixed) velocity
vector q and a set of independent velocities z can be constructed directly with very
few arithmetic operations and avoiding the formation and factorization of the
Jacobian matrix FFFFq.

An example of a tree-configured planar mechanism is presented in Figure 5.5.
If the system has not gotten any fixed element, one of the elements of the sys-
tem shall be defined as a base body. There is not a single choice for the base
body, but in practice there are nearly always some natural or physical reasons
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Figure 5.6.  Numbering of the independent coordinates of a tree-type planar multi-
body system.

that determine the selection. The base body can have several branches departing
from it, and some branches can also originate other branches.

An appropriate set of independent variables or coordinates for open-chain sys-
tems, such as the one shown in Figure 5.6, is determined by the variables that
describe the rigid body motion of the base body plus the relative or joint coordi-
nates that define the motion of each body with respect to the previous one in the
corresponding branch of the chain. It is quite clear that this set of relative coordi-
nates is independent. Figure 5.6 displays the base body plus relative coordinates
of the planar system of Figure 5.5. In the example shown in Figures 5.5 and
5.6, it has been assumed that all the joints are of revolute type, although pris-
matic or any other joint type may be considered also.

There is a very easy way of constructing a matrix R for the system of Figure
5.6 without any need of forming and factoring the Jacobian matrix FFFF q.
Remember that the columns of matrix R are a basis of the nullspace of the
Jacobian matrix or, in other words, a base of the space of allowable velocities.
This means that any velocity vector can be expressed as a linear combination of
the columns of matrix R. This is exactly what expression (5.61) represents. The
column (i) of matrix R is the velocity vector in dependent coordinates q o b -
tained with:

zi = 1

zj = 0               j = 1, 2, ... n  (j¹i) (5.71)
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Figure 5.7.  Detail numbering of one of the branches of the tree-type planar multi-
body system.

If the multibody system does not have closed loops, as is the case of the
mechanism of Figure 5.6, this velocity vector; thus the corresponding column of
matrix R, can be computed directly. In Figure 5.7, a branch of the mechanism of
Figure 5.6 is displayed in more detail, including a possible numbering of some
points.

Consider, for instance, the column of matrix R corresponding to the indepen-
dent coordinate z8. This column is obtained by giving a unit velocity to angle
z8, and no velocity to all the remaining coordinates zj (j¹8). Only the column el-
ements corresponding to points 4 and 5 will have a non-zero value. In general
terms, only the dependent coordinates that are upwards in the branch of the inde-
pendent coordinate being moved will introduce non-zero elements in the corre-
sponding column of matrix R. It is very easy to take advantage of this well-
defined sparsity structure on the computer implementation.

In the 3-D case, the concepts and computations are nearly as simple as in the
planar case. The slightly higher complexity comes from: first, definition of the
base body coordinates in 3-D; and second, the different kinds of joints that can
appear in 3-D multibody systems. Only revolute, prismatic, cylindrical, univer-
sal, and spherical joints will be considered here.

5.3.1.1  Definition of Base Body Motion

There is no problem in finding six independent variables that define the velocity
of the base body. Perhaps the simplest choice is determined by:

1) The three Cartesian components of the velocity of a reference point P; and,
2) The three Cartesian components of the base body angular velocity vector wwww.
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The difficulty arises because the velocities zb
T
= v P

T wwwwT  cannot be integrated to
get the corresponding position variables due to the angular velocity part. There is
no problem in using this base body velocity vector to compute the correspond-
ing columns of matrix R. The velocity vector zb needs to be transformed into a
different one, which can be called zB, and contains only integrable variables. The
most important options are:

i) Sets of three independent parameters, such as Euler or Bryant angles. The
limitation of this option is that none of these sets are free of singular
positions; that is, positions for which the angular parameters are not
determined unequivocally. If these positions can be effectively reached, it is
necessary to foresee the cure, perhaps in the form of a change of reference
frame.

ii) Larger sets of dependent parameters, such as Euler parameters or
quaternions. Singularities can always be avoided, but there are constraint
equations that relate the variables to be integrated. This dependency can be
taken into account in the integration process. It is not really a very serious
problem, as seen previously in this chapter.

It will always be possible to find a position-dependent matrix W that relates
integrable and non-integrable base body velocities:

z b  = W(zB) zB (5.72)

where zb is used to construct the matrix R, and zB is used for the numerical inte-
gration process. This transformation shall be introduced in the vector of indepen-
dent velocities z before integrating it. It is not necessary to introduce it in z
which can always be integrated once.

The first three columns of R related to the velocity of the reference point P
can be computed as the result of applying three unit translations to the whole
system on the inertial frame axes. In order to find a general expression, if z1, z2,
and z3 are the related independent velocities, the velocity of a point j, and a unit
vector uj, due to the translation of the base body can be expressed as:

rj = z1 n1  + z2 n2 + z3 n3 (5.73)

u j = 0 (5.74)

where (n1, n2, n3) are unit vectors on the inertial frame axes. From these equa-
tions, the elements of the columns of matrix R, corresponding to point j and vec-
tor uj, can be computed in the form:

Ð column 1  z1 = 1       z2 = 0     z3 = 0

Ð column 2  z1 = 0       z2 = 1     z3 = 0

Ð column 3  z1 = 0       z2 = 0     z3 = 1
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If the independent velocities are the Cartesian components of the angular ve-
locity vector wwww , the columns 4 to 6 of the matrix R corresponding to the base
body rotation may be computed as follows:

rj = z4 n1  Ù (rj Ð  rP) + z5 n2 Ù (rj Ð  rP) + z6 n3 Ù (rj Ð  rP) (5.75)

u j = z4 n1  Ù u j + z5 n2 Ù u j + z6 n3 Ù uj (5.76)

From these formulas, columns 4 to 6 can be computed by making

Ð column 4  z4 = 1       z5 = 0       z6 = 0

Ð column 5  z4 = 0       z5 = 1       z6 = 0

Ð column 6  z4 = 0       z5 = 0       z6 = 1

and this completes the information necessary to determine the part of R due to
the base body degrees of freedom.

5.3.1.2  Different Joints in 3-D Multibody Systems

Figure 5.8 illustrates a generic joint i, a point j, and a unit vector uj located up-
wards in the branch. The non-zero elements, corresponding to point j and vector
uj in the columns of matrix R associated with the degrees of freedom of joint i,
are considered next.

Revolute joint. The joint variable is the angle zi that defines the rotation of the
joint around the axis determined by point i and vector ui. The velocity of point j
induced by the relative velocity at joint i is

rj = zi ui Ù (rj Ð  ri) (5.77)

and the velocity induced in the unit vector uj:

u j = zi ui Ù u j (5.78)

As done before, the corresponding values of the column (i) elements of the
matrix R can be computed by giving a unit value to zi.

Prismatic joint. Let zi be the translational joint variable located on a line defined
by point i and vector ui. The induced velocities of point j and vector uj are:

rj = zi ui (5.79)

u j = 0 (5.80)

These expressions allow for a very easy computation of the elements of the
considered column of the matrix R.
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j
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uj

Figure 5.8.  Description of a generic joint.

Cylindrical joint. This joint is different from the previous ones, since it has two
degrees of freedom and it introduces two columns in matrix R. Let zi and zi+1 be
respectively the relative angle and distance that constitute the joint variables.
Vector ui determines the direction of both the rotation axis and the translation.

The velocities of point j and vector uj, due to the joint variables, are in this
case:

rj = zi ui Ù (rj Ð  ri) + zi+1  ui (5.81)

u j = zi ui Ù u j (5.82)

The non-zero elements in the corresponding matrix R columns, can be ob-
tained by making, respectively:

Ð column i  zi = 1          zi+1 = 0

Ð column i+1  zi = 0          zi+1 = 1

Universal joint. This joint can be considered equivalent to two revolute joints,
with the axes (belonging to different bodies) intersecting orthogonally at a com-
mon point. If zi and zi+1 are the joint independent velocities, the elements related
to point j and vector uj in the columns of R come from the following velocity
expressions:

rj = zi u i Ù (rj Ð  rj) +  zi+1 v i Ù (rj Ð  ri) (5.83)

u j = zi u i Ù  u j +  zi+1 v i Ù  u j (5.84)

From these expressions, the two columns of matrix R can be obtained by
giving, respectively, the following values to the independent velocities:
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Ð column i  zi = 1          zi+1 = 0

Ð column i+1  zi = 0          zi+1 = 1

Spherical joint. The spherical joint allows for three rotations. This fact produces
in the joint similar difficulties to the ones that were found at the time of defining
the angular orientation of the base body. There is no problem in using three unit
angular velocities on three orthogonal axes to compute the corresponding
columns of matrix R. However, these independent velocities cannot be integrated
to get displacement or position variables. It is necessary to transform those inde-
pendent velocities into another set of integrable velocities that are dependent or
independent according to an expression similar to (5.72).

If zi
b
, zi+ 1

b  and zi+ 2
b  are the Cartesian components of the relative angular veloc-

ity vector, the velocities of point j and vector uj are:

rj = zi
b
 n 1 Ù  (rj Ð  ri) +  zi+1

b
 n 2 Ù  (rj Ð ri) +  zi+2

b
 n 3 Ù  (rj Ð ri) (5.85)

u j = zi
b
 n 1 Ù  u j +  zi+1

b
 n 2 Ù  u j +  zi+2

b
 n 3 Ù  u j (5.86)

where (n1, n2, n3) are orthogonal unit vectors on the inertial reference frame
axes.

Using equations (5.85) and (5.86), the columns of matrix R (the terms corre-
sponding to point j and vector uj) can be computed with the following values:

Ð column i  zi
b
 = 1       zi+1

b
 = 0       zi+2

b
 = 0

Ð column i+1  zi
b
 = 0       zi+1

b
 = 1       zi+2

b
 = 0

Ð column i+2  zi
b
 = 0       zi+1

b
 = 0       zi+2

b
 = 1

Once we have described how the columns of matrix R can be computed, the
computation of the term (Sc) that appears in equation (5.67) remains. This term
represents the dependent acceleration vector q computed with the true velocities q
or z but with zero independent accelerations z.

The elements of vector (Sc) corresponding to point j and vector uj can be
computed by adding to the acceleration of this point and vector the contribution
of the true independent velocities of the base body and all the joints that are
downwards in the branch of point j. The corresponding expressions are:

r j  z=0  =   zk å
k

 u k Ù  (rj Ð  ri) + u k Ù (rj Ð  ri) (5.87)

u j  z=0  =  zk å
k

 u k Ù  u j +  u k Ù ui (5.88)
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Figure 5.9.  Closed-chain multibody system.

Hence, all the information necessary to compute the coefficients of equation
(5.67) is available.

5.3.2  Closed-Chain Multibody Systems

In order to extend the previous formulation to multibody systems including
closed loops, one should remember briefly the formulation of the dynamic equa-
tions using dependent coordinates and Lagrange multipliers through equation
(5.10) repeated here:

M  FFFF q
T

FFFF q 0
 q

llll
 = Q

c(q, q)
(5.89)

This equation describes the motion of the multibody system formulated with
dependent coordinates. The natural coordinates can lead to a constant matrix M, a
Jacobian matrix FFFFq being a linear function of coordinates q, and to no velocity-
dependent inertia forces in the RHS of equation (5.89). The term c(q, q) comes
from the double differentiation of the constraint conditions and can be replaced by
the term g (See equation (5.28)), if the Baumgarte constraint stabilization tech-
nique is desired.

After this brief introduction, the formulation described in the previous section
can be extended to systems with closed loops and perhaps several base bodies, as
in the system shown in Figure 5.9. Here, the system can be transformed into
one or more open tree systems by opening the closed loops and disconnecting
the base bodies. With natural coordinates, most of the constraint equations come
from the rigid body conditions of the elements. The simplest way to transform
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the system into one or more open trees is by removing the rigid body constraints
corresponding to the closure of the loops and the connection between base bodies
shown by dashed lines in the system of Figure 5.9. With reference point coordi-
nates, constraints arise mainly from the system joints. In this case, the best way
to open the loops is by removing some of them.

In order to obtain the dynamic equations, it is now very convenient to distin-
guish between the constraint equations corresponding to the open-chain systems
(superscript 1) and the constraints corresponding to the closure conditions and
connection between base bodies (superscript 2). Writing the dynamic equations
using the Lagrange multiplier formulation of equation (5.89) and separating the
two groups of constraints, we arrive at:

M FFFF q
1T FFFF q

2T

FFFF q
1

0 0

FFFF q
2

0 0

 
q

llll1

llll2

 = 
Q

c1

c2

 (5.90)

The velocity transformation corresponding to the open-chain constraints,
whose Jacobian matrix nullspace is given by matrix R1 can now be introduced.
Consequently,

q = R 1 z (5.91)

and equation (5.90) becomes:

R
1T

 M R
1
  R

1T
 FFFF q

2T

FFFF q
2

 R
1

0
 z

llll2
 =

 
R1

T
 (Q Ð  M S

1
 c1)

c2 Ð  FFFF q
2

 S
1
 c1

 (5.92)

The vector z in equations (5.91) and (5.92) is not a vector of independent co-
ordinates as in Section 5.3.1, but dependent coordinates corresponding to the
base bodies plus the relative coordinates of the open tree configuration joints.
These coordinates are related by the constraint equations FFFF 2. Then equation
(5.91) is a transformation between two dependent velocity vectors. Vector z will
contain usually far less variables than vector q.

This formulation is also advantageous because the matrix R1 which corre-
sponds to open-chain constraints can be constructed directly without any explicit
Jacobian factorization as explained in Section 5.3.1. The term (FFFF q

2  R1) repre-
sents the projection of closure loop constraints (superscript 2) on the nullspace
of the open-chain system (superscript 1).

Equation (5.92) has the form of the equations of motion in dependent coordi-
nates with Lagrange multipliers to which Baumgarte stabilization can be directly
applied. This could obviously be substituted by the penalty formulation (See
Section 5.1.4), or by seeking a true independent set of coordinates. This can be
done (See Section 5.2) by computing numerically the nullspace of the projected
Jacobian matrix (FFFF q

2  R1) which can be a very small matrix.
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5.4  Formulations Based on the Canonical Equations

Some authors have drawn attention recently to the use of the canonical equations
as a way to improve numerically the formulation of the equations of motion of
mechanical systems and to perform a faster and more stable simulation; thus
more suitable for real time analysis. We discuss in this section the different ap-
proaches that can be derived from the use of the canonical equations for con-
strained mechanical systems, and whether the use of these equations may lead to
more efficient and stable numerical implementations than those coming from ac-
celeration-based formalisms. Specifically, we will describe the canonical equa-
tions that result: first, from the use of the Lagrange multipliers; secondly, from
the use of independent coordinates; and thirdly, from the penalty formulation.

5.4.1  Lagrange Multiplier Formulation

Consider again a mechanical system whose configuration is characterized by a
vector q of n generalized coordinates that are interrelated through the m kinematic
constraint conditions FFFF(q, t)=0, of the holonomic type. The Lagrange's equations
of such a system are given in equation (5.2) which along with the constraint
equations (5.1) constitute a set of (n+m) mixed differential algebraic equations
(DAEs) of index three (See Chapter 7), with llll as the Lagrange multipliers. The
conjugate or canonical momenta was defined in Chapter 4 as:

p = ¶L

¶q
(5.93)

along with the Hamiltonian:
 H = pT q ÐL (5.94)

where the previously introduced matrix notation has been employed. Hamilton's
equations for a constrained system are formulated (See Section 4.1.5) as:

q = ¶H

¶p
  (5.95)

Ð  p  = ¶H

¶q
 Ð Q ex + FFFF q

T
 llll  (5.96)

In the case of mechanical systems, the Lagrangian L is defined in terms of q,
q, and t and rather than following a lengthy process to form the Hamiltonian as
an explicit function of q, p, and t, and then differentiating as in (5.95), the
canonical equations can be directly obtained from (5.93) and (5.96). Since the
system kinetic energy is a quadratic function of the generalized velocities, equa-
tions (5.93) and (5.96) directly lead to the following set of equations in matrix
form:



190     5. Dynamic Analysis. Equations of Motion.

p = M q (5.97)

p  = Lq + Q ex Ð  FFFF q
T

 llll  (5.98)

where M is the mass matrix, Lq is the partial derivative of the Lagrangian with
respect to the coordinates, FFFFq is the Jacobian matrix of the constraint equations,
and Qex is the vector of applied external and dissipative forces. The combination
of equations (5.97)-(5.98) and the constraints conditions constitutes a system of
(2n+m) differential and algebraic equations (DAE) of index two (See Chapter 7).
Although there are n more equations than in equation (5.10), p can be obtained
explicitly by (5.98). In addition, index two DAEs are better behaved than index
three DAEs (Brenan et al. (1989)). Therefore, the use of (5.97)-(5.98) may be
numerically advantageous as compared to the use of (5.10), when using algo-
rithms for the solution of the mixed differential algebraic equations.

In order to avoid the mixed differential and algebraic equations, Lankarani and
Nikravesh (1988) modified the system Lagrangian to include the kinematic ve-
locity constraints as:

L*= L + FFFFT ssss    (5.99)

where ssss is a new set of Lagrange multipliers (It may be very easily demonstrated
that llll  = ssss.) The new Hamiltonian is H*=pTqÐL*, and the application of (5.93)
and (5.95) leads to:

p = M q + FFFF q
T

 ssss  (5.100)

p = Lq + Q ex + FFFF q

T
 ssss  (5.101)

That, along with

FFFF  = FFFF q q (5.102)

constitutes a set of 2n+m ordinary differential equations (ODE), with p, q, and ssss
as unknowns. If equation (5.100) is differentiated and substituted into the accelera-
tion-based equation (5.4), the result is precisely the additional canonical equation
(5.101). Thus, the canonical equations originate from the acceleration-based
equations by the mere canonical transformation defined by equation (5.100).

Only (n+m) equations need to be solved at each time step in the numerical
implementation of the algorithm, which can be described as follows:

Algorithm 5-6

1. Start at time t when p and q are known.

2. Use (5.100) along with (5.102) to solve for q and ssss    at time t, as follows:

M  FFFF q
T

FFFF q 0
 q

Ð  ssss
 = p

0
(5.103)
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3. Use (5.101) to compute p explicitly, with no solution of equations involved.
4. Obtain the vectors p and q at time (t+Dt) by the numerical integration:

s t
T
 º z

T
,  y

T
t          s t +Dt

Tn.i.s.
 º  zT,  yT

t +Dt 

5. Upon convergence of the n.i.s., update the time variable and go to step 2.

Lankarani and Nikravesh (1988) showed in their numerical simulations that
since only the first time derivative of the constraints is used, the integration of
this equations is more efficient and more stable than the acceleration-based for-
mulation. With the acceleration-based formulation to avoid the integration of the
mixed differential algebraic equations, the constraint conditions need to be differ-
entiated twice; thus leading to larger constraint violations.

5.4.2  Formulation Based on Independent Coordinates

The formulation of the canonical equations of motion can also be written as a
function of a minimum set of independent coordinates. This is the approach fol-
lowed by Bae and Won (1990) who used the velocity transformation method de-
veloped by Kim and Vanderploeg (1986) to transform the equations of motion
from the Cartesian space to the joint space. They used an equivalence between the
Lagrangian and Newton Euler formulation to derive the partial derivative of the
kinetic energy with respect to the independent coordinates. We show in this sec-
tion how the canonical equations in independent coordinates can be obtained very
simply if one considers equations (5.97) and (5.98) as the starting point.

Given the constraint conditions (See equation (5.61)) FFFF(q, t)=0, one can find
the two matrices R and S such that

q = R z + S b (5.104)

where z represents a set of independent of velocities. The substitution of (5.104)
into (5.97) yields

p  = M R z  + M S b (5.105)

and pre-multiplying both sides of equations (5.105) and (5.98) by RT one can ob-
tain, respectively,

RT p = RT M R z  + R T M S b (5.106)

RT p = RT (Lq + Qex) (5.107)

where the term containing the Jacobian matrix has been dropped, since RTFFFF q
T  = 0

(See Chapter 3).
The new variable y=RTp can be defined as the projection of the canonical

momenta over the subspace of allowable motions. Then

y  = R
T
p + R

T
 p (5.108)

and the substitution of these two expressions into equations (5.106) and (5.107)
leads to
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y = RT M R z  + R T M S b (5.109)

y  = RT (Lq + Qex) + R
T
 p (5.110)

Substituting the value of p given by (5.105) into (5.110) one can arrive at
the final set of canonical equations in independent coordinates:

y = RT M R z + R T M S b (5.111)

y  = RT (Lq + Qex) + R
T (M R z + M S b) (5.112)

These two equations may be also obtained from the acceleration-based equa-
tions (5.67) by the mere canonical transformation of (5.111). Equations (5.111)
and (5.112) constitute a set of 2(nÐm) first order ordinary differential equations.
Since y  is given explicitly in (5.112), only nÐm equations need to be solved for
each function evaluation in the numerical implementation of the algorithm. This
can be described as follows:

Algorithm 5-7

1. Start at time t in which z and y are known.
2. Solve the position and velocity problems to get q and q.
3. Obtain the matrices R and R .
4. Use (5.111) to solve for z. The solution of nÐm equations is required.
5. Use (5.112) to solve for y  explicitly.
6. Obtain the vectors z and y at time (t+Dt) by numerical integration:

s t
T
 º z

T
,  y

T
t          st +Dt

Tn.i.s.
 º  zT,  yT

t +Dt 

7. Upon convergence of the n.i.s., update the time variable and go to step 2.

This scheme can be compared to the (nÐm) second order ordinary differential
equations resulting from the acceleration-based formulation (equation (5.67)):

R T M R z = RT Q  + RT M S [ FFFFt + FFFFq (R  z+ S b)] (5.113)

where Q = Qex + Lq Ð M q contains the external forces plus all the inertia terms
coming from the differentiation of the Lagrangian. One can see that both methods
require the triangularization of the same matrix (RTM R) at each function evalua-
tion. In addition, there might not be much advantage in using the canonical equa-
tions (5.111) and (5.112). Because although equation (5.113) involves more ma-
trix manipulations than (5.111) and (5.112) and has a more complicated forcing
term, the canonical approach requires the additional evaluation of R  with a sizable
amount of computations.
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5.4.3  Augmented Lagrangian Formulation in Canonical Form

We consider in this section the penalty augmented Lagrangian formulation in its
canonical form. Its better accuracy and stability properties makes this method
more attractive than the generic penalty formulation.

Basic Augmented Lagrangian Formulation. Equation (5.99) can be considered as
the starting point to build a modified Lagrangian formulation that will not only
contain the Lagrange multipliers ssss but also the penalty terms of the previous
section. Accordingly

L
*
 = L + 1

2
 FFFF

T
 aaaa FFFF Ð 1

2
 FFFFT

 WWWW2
 aaaa FFFF + FFFF

T
 ssss* (5.114)

In the limit when the constraint conditions are satisfied, the penalty terms
vanish, and ssss=ssss*. This is similar to the Lagrange's formulation ssss*=llll* and after
the augmented Lagrangian iteration when the constraints are satisfied to machine
precision ssss =llll. The differentiation of L* with respect to q leads to the following
new canonical momenta in matrix form:

p = ¶L *

¶q
 = Mq +  FFFF q

T aaaa FFFF  +  FFFF q
T ssss * (5.115)

The modified Hamiltonian can be written as H *= pT q Ð L* and the use of
(5.96), including the dissipative Rayleigh forces of (5.30), leads to:

M +  FFFFq
T
 aaaa FFFFq  q = p Ð  FFFFq

T
 aaaa FFFFt +  FFFFq

T
 ssss* (5.116a)

p = Q +  L q  +  FFFFq

T
 aaaa FFFF Ð  FFFFq

T
 aaaa (WWWW2

 FFFF + 2 WWWW  mmmm FFFF) +  FFFFq

T
 ssss* (5.116b)

Equations (5.116) constitute a set of 2n first order ordinary differential equa-
tions. However, p is given in explicit form, and therefore only n algebraic equa-
tions need be solved at each function evaluation for the numerical implementa-
tion of the algorithm. The numerical simulations have shown that equations
(5.116) tend to be numerically stiff due to all the penalty terms concentrated in
the RHS of (5.116b). This numerical stiffness limits the possible choices of
numerical integrators. Standard ODE integrators that are based on conditionally
stable predictor-corrector multi-step formulae lead to an increased number of
function evaluations. A modification of (5.116) is used in the next section that
circumvents this problem.

Modified Augmented Lagrangian Formulation. The canonical equation (5.116a)
may be also written as:

p = M q +  FFFFq
T
 aaaa FFFF +  FFFFq

T
 ssss* (5.117)

which indicates that the canonical momenta is stabilized through the addition of
penalty terms that are proportional to the violation of the velocity constraint
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equations. If equation (5.117) is differentiated and substituted into the accelera-
tion-based augmented Lagrangian equation (5.48) the result is the additional
canonical equation (5.116b).

However, we can achieve a better stabilization of the canonical momenta if
we add to the RHS of (5.117) two additional penalty terms: one term propor-
tional to the constraint violation and the other to its integral. Accordingly, we
define a new momenta p as:

p = M q +  FFFF q
T

 aaaa  FFFF  +  2  mmmm  WWWW  FFFF  +  WWWW 2
 FFFF  dt

to

t

 Ð  FFFF q
T

 ssss * (5.118)

By expanding the term FFFF, equation (32) becomes

M +  FFFF q
T

 aaaa  FFFF q  q = p Ð  FFFF q
T

 aaaa  FFFF t +  2  mmmm  WWWW  FFFF  +  WWWW 2 FFFF  dt
to

t

 Ð  FFFF q
T

 ssss* (5.119a)

The differentiation of (5.119a) and substitution into (5.48) leads to the second
set of modified canonical equations:

p = Q +  Lq +  FFFF q

T
 aaaa  FFFF  + 2 WWWW  mmmm  FFFF  +  WWWW 2

 FFFF
to

t

 dt  +  FFFF q

T
 ssss* (5.119b)

which along with (5.119a) constitute a set of 2n first order ordinary differential
equations in the unknowns p, q, and ssss*. Again, only n algebraic equations need
be solved at each function evaluation for the numerical implementation of the
algorithm. Contrary to equations (5.116), equations (5.119) do not become stiff.
They even provide more numerical accuracy and better constraint stabilization
than the acceleration-based formulation of equation (5.48).

We can compare this set of equations with the n second order ordinary differ-
ential equations resulting from the acceleration-based formulation. While both
formulations require the triangularization of the same leading matrix for each
function evaluation, there are advantages in the use of (5.119) as compared to
(5.48). The kinematic constraint conditions are differentiated only once with the
canonical procedure and twice, in the acceleration based formulation. This will
lead to less violations of the constraints. It is shown in Bayo and Avello (1993)
how this factor becomes detrimental for the acceleration-based formulation under
repetitive singular positions, whereas the canonical approach leads to a much
better performance.

The multipliers ssss* do not need to be solved explicitly. Following the same
procedure as that used with the acceleration-based augmented Lagrangian formula-
tion, the ssss* may be obtained in an iterative manner as:

ssssi+1
*  = ssssi

*  +  (FFFF +  2  mmmm WWWW FFFF +  WWWW2
 FFFF dt

to

t

)i+1

  i = 0, 1, 2, ...
(5.120)
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with ssss0
*  = 0 for the first iteration. Equation (5.119a), including the iterative pro-

cess of (5.120), becomes

M +  FFFF q
T

 aaaa  FFFF q  qi+1 = M qi Ð  FFFF q
T

 aaaa  (FFFF t +  2  mmmm  WWWW  FFFF  +  WWWW 2 FFFF  dt
to

t

)

 i = 0, 1, 2, ... 
(5.121)

with Mqo =p for the first iteration. Equation (5.121) shows that the velocity cal-
culation at each function evaluation is refined so that the weighted summation of
the constraint equations (5.120) is satisfied to machine precision. After the ve-
locity calculation equation, (5.119b) may be used to evaluate the derivative of
the canonical momenta.

Algorithm 5-8

1. Start at time t in which p and q are known.
2. Use (5.121) iteratively to solve for q, with M  qo=p for the first iteration. At

the end of each iteration use (5.120) to calculate the Lagrange multipliers ssss*.
3. Use (5.119b) to compute p explicitly with no solution of equations involved.
4. Call the numerical integration subroutine to compute p and q at time t+Dt.
5. Upon convergence of the n.i.s., if desired, use a differentiation scheme to ob-

tain llll = ssss.
6. Update the time variable and go to step 2.

This algorithm is as efficient numerically as Algorithm 5-3, but much more
stable under repetitive singular positions.

Canonical Augmented Lagrangian Formulation for Non-Holonomic Systems.
The modified augmented Lagrangian formulation described above may also be ex-
tended to non-holonomic systems with constraints of the form:

FFFF (q, q, t) = 0 (5.122)

Typically, non-holonomic constraint conditions for multibody systems are
such, that

FFFF = A(q, t) q +  B(q, t)  (5.123)

The acceleration-based augmented Lagrangian formulation for this type of
constraints is

MMMM    q = Q +  Lq Ð     M q Ð  A
T     aaaa    FFFF +  mmmm FFFF  Ð  A

T     llll*
(5.124)

In order to obtain the canonical equations, we follow a procedure similar to
that used for the holonomic case and establish the following canonical transfor-
mation

p = M q +  A
T

 aaaa (FFFF +  mmmm FFFF dt
to

t

) +  A
T

 ssss* (5.125a)
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which indicates that a better stabilization of the canonical momenta may be
achieved by considering one penalty term proportional to the constraint violation
and the other term proportional to its integral. The differentiation of (5.125a) and
posterior substitution into (5.124) leads to the second set of canonical equations:

p = Q +  Lq  +  A
T

aaaa (FFFF +  mmmm FFFF
to

t

 dt) +  A
T

 ssss* (5.125b)

which along with (5.125a) constitutes a set of 2n first order ordinary differential
equations in the unknowns p, q, and ssss *. Again only n equations need to be
solved at each function evaluation. The multipliers are given by

ssssi+1
*  = ssssi

*  +  (FFFF +  mmmm FFFF dt
to

t

)
i+1

 ,   i = 0, 1, 2, ... (5.126)

with ssss0
*  = 0 for the first iteration.
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Problems

5/1 Using natural coordinates, write the equations of motion of the slider-crank
mechanism of the figure with: a) Lagrange multipliers b) Penalty formulation.
Assume that the mass is uniformly distributed and the center is located at the
middle of each element. Also L2=L3/2=L, m2=1, m3=2, and m4=1.

5/2 Form the matrix R of the mechanism of Problem 5/1 and find the equations of
motion: a) in dependent coordinates using qT=(x1,y1,x2) and equation (5.17); and
b) in independent coordinates using z1=x2 and equation (5.67). For case a)
discuss the regularization process to avoid the singular position when L3=L2
and both slider and crank are in the vertical position.

5/3 Repeat Problem 5/2 using the canonical formulation (equations (5.111) and
(5.112)) in independent coordinates using z1=x2.
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2
3

A

1

2

(x1,y1)

(x2,y2)

(x2,y2)

x1

z1

1

2

Figure P5/1. Figure P5/4.

5/4 Find the equations of motion of the mechanism of the figure when the coordinate
x1 is kinematically imposed. Use: a) Dependent coordinates with Lagrange mul-
tipliers; b) independent coordinates choosing the angle z1 as the independent
variable.

5/5 Solve Problem 5/3 using the canonical formulation of Section 5.4 with depen-
dent coordinates and the penalty formulation for the constraint equations.

5/6 Solve for the equations of motion of the mechanism shown in the figure, using
the velocity transformation methods of Section 5.3. Open the loop at joint 2
where indicated and then apply the closure conditions using the Lagrange multi-
plier approach with Baumgarte stabilization.

1
2

A B

2 3

1

2

(x2,y2)
z1

z2

Figure P5/6. Figure P5/7.

5/7 Form the differential equations of motion of the mechanism of the figure, using
velocity transformations and the penalty formulation for the closure condition
y2=0.
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5/8 Derive the equations of motion of a coin that rolls over a flat surface with no
slipping, using the natural coordinates that are shown in the figure. The non-
holonomic constraint condition is given by vP=0 (3 equations).

u

1

v

2

P

2

u1

u2

G
W

1

Figure P5/8. Figure P5/9.

5/9 Consider a satellite that is modeled with two points 1 and 2, and two unit vectors
u1 and u2. This satellite contains a high speed rotor that rotates at a constant
relative angular velocity W. Model the effect of the rotor by means of an equiva-
lent set of forces.

A

1

2

y1

y2

M

Figure P5/10.

5/10 The controlled mechanical system in the figure consists of two rods with two
revolute joints that move on a vertical plane. Joint A is torque free. Joint 2 has
an actuator that applies two opposite torques on both bars, so as to keep the
system in the vertical position (Y1 = Y2 = 0). Write the differential equations of
motion using Y1 and Y2 as independent coordinates.
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