11

Forward Dynamics of Flexible
Multibody Systems

So far, several approaches to the solution of the kinematics and dynamics of
multibody systems have been presented. It has been assumed in these approaches
that all the bodies satisfy the rigid body condition. A body is assumed to be rigid
if any pair of its material points do not present relative displacements. In prac-
tice, bodies suffer some degree of deformation; so this assumption does not hold
in the strict sense. However, in the majority of the cases the relative displace-
ments are so small that they do not affect the system's behavior. Therefore, they
can be neglected without committing an appreciable error.

There are some important cases, however, in which deformation plays an im-
portant role. This is the case of lightweight spatial structures and manipulators
or high-speed machinery. The dynamics of those systems is influenced by the de-
formation; thus the formulation of the preceding chapters cannot be applied. The
complexity of the equations of motion considering deformation grows consider-
ably. So does its size, since all the variables defining the deformation must also
be considered.

In this chapter some of the methods that have been presented in the literature
for the dynamics of flexible multibodies will be reviewed. Next a general method
based on the moving frame approach will be described with natural coordinates
that can be used when the elastic displacements are small. A formulation for
beam-like elements based on the large displacement theory will be presented, and
expressions for a nonlinear finite element that uses the same kind of Cartesian
variables such as coordinates of points and components of unit vectors used in
the previous chapters will be developed. Finally, some practical examples will
be shown.

11.1 An Overview

In this section a quick overview will be given on some of the methods presented
in the literature for the analysis of flexible multibody systems. Some of the
work in the field was aimed at developing formulations suitable for particular
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376 11. Forward Dynamics of Flexible Multibody Systems

mechanisms such as the four-bar linkage or the crank and rocker mechanism.
These approaches are not reviewed here, but the reader is referred to the papers by
Lowen and Jandrasits (1972), Lowen and Chassapis (1986), Erdman and Sandor
(1972), and Erdman and Sung (1986).

All the methods currently available may be divided into three main groups: a)
the simplified methods based on elasto-dynamics, b) the methods based on defin-
ing the deformation with respect to a moving reference frame, and c) the methods
based on defining the overall motion plus deformation with respect to an inertial
frame.

In the simplified elasto-dynamic methods the deformation is considered un-
coupled from the rigid body motion which is considered known by means of
rigid body dynamics and is called the nominal motion. The main assumption is
that the nominal motion induces deformations which are considered small, but
that the deformations do not affect the nominal motion. This approach originally
proposed by Winfrey (1971) was later expanded by Midha et al. (1978) and
Sunada and Dubowsky (1981) to include inertial and centrifugal effects in the
elastic equations. Naganathan and Soni (1987) proposed, for the case of open-
chain flexible manipulators with independent coordinates (no constraint condi-
tions), the use of elasto-dynamics with an iterative procedure that couples the
elastic deformations with the nominal motion. For more general applications,
the simplified approaches based on elasto-dynamics cannot be accepted since the
coupling terms may strongly influence the solution. In such cases, one of the
other two families of methods must be used.

The methods in the second group include all the nonlinear coupling terms in
the formulation. Two kinds of variables are considered: first, the rigid body vari-
ables, that express the large nonlinear overall motion and characterize the mov-
ing frame of each body; second, the deformation variables, that express the state
of deformation with respect to the moving frames. Both the relative displace-
ments and the gradient of the displacements are assumed to be small, in order
that the linear theory of elasticity holds. Some authors take as deformation vari-
ables the nodal variables resulting from a finite element discretization of the flex-
ible body (Song and Haug (1980) and Serna and Bayo (1989)). Since this may
lead to a large number of unknowns, one way of reducing the size of the problem
consists in assuming that during the motion only a few modes will be excited
and in taking the amplitude of such modes as unknowns. Shabana and Wehage
(1983) used a popular substructuring technique called component mode synthesis
(Hurty (1965)) to reduce the number of unknowns in each body. Other ways of
selecting the most convenient assumed modes may be found in Craig (1981).
Other authors (Book (1980), Kim and Haug (1988 and 1989), Changizi and
Shabana (1988)) have developed recursive formulations that are based on the
same approach for the definition of the deformation. A major advantage of the
moving frame approach is that it makes use of the classical linear finite element
theory to introduce either the nodal variables or the assumed mode shapes. Since
there are a large number of reliable finite element codes well-known by engi-
neers, this method has a special attractiveness. Some of the limitations of this
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method have been pointed out by Kane et al. (1987), who showed that the mov-
ing frame approach with linear elasticity fails to consider the rotational stiffening
effects that appear at very fast speeds of operation and which become important.
As pointed out by Simo and Vu-Quoc (1987), second-order strain measures are
necessary to capture these centrifugal stiffening effects through the geometric
stiffness.

The third group encompasses a series of more recent methods, introduced first
by Simo and Vu-Quoc (1986), that are based on the large rotation theory. Its
main purpose is to develop nonlinear finite elements to be embedded in the
multibody formalism. There is only one kind of variables, which are the global
positions and orientations of the nodes referred either to an initial undeformed
state (total Lagrangian formulation) or to a previously known state of deforma-
tion (updated Lagrangian formulation). These variables define at the same time
the large translations, rotations, and deformations of the body. This method al-
lows for the existence of arbitrarily large relative displacements and displacement
gradients. However, since elastic constitutive relations are most commonly used,
the assumption of small strains is often made. Unlike the moving frame ap-
proach, this method incorporates automatically the correct rotational stiffening
terms and is well suited to study instabilities and buckling. Its main drawback is
that the size of the problem cannot be reduced as in the moving frame approach.
Therefore it is usually large. Furthermore, this formulation is limited to flexible
bodies that can be modeled using beam and shell elements.

After considering this overview of all the methods available so far for the dy-
namic analysis of flexible multibodies, we are going to concentrate in this chap-
ter: first, in the formulation of the classical approach of the moving frame with
natural coordinates (Section 11.2) and secondly on a new formulation for beam-
like elements based on the large displacement theory that is also based on the use
of natural coordinates (Section 11.3). Note that both formulations are non-exclu-
sive in the sense that one may be preferred over the other depending on the type
of applications. Since both are based on the natural coordinates, they can per-
fectly coexist with the rigid-body formulation of the previous chapters, in a gen-
eral purpose simulation package. In those cases in which the geometry is com-
plicated and only small deformations are expected, the moving frame approach
with assumed modes will be the best choice. Conversely, with simplified geom-
etry and appearance of nonlinear effects the second approach will be the way to

go.

11.2 The Classical Moving Frame Approach

In this section the moving frame method using the natural coordinates will be
described (Vukasovic et al. (1993)). A complete formulation of the moving
frame approach within the setting provided by the reference point coordinates has
been described by Shabana (1989)). By means of the classical formulation, we
use the natural coordinates of the body (or element) to unequivocally define the
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X

Figure 11.1. Flexible body with natural coordinates and the moving frame.

moving frame that moves with the large overall rigid body motion and to which
the elastic deformation variables are referred. The natural coordinates of the body
do not include relative translations or rotations and are subjected to the corre-
sponding rigid body constraints. The formulation of the joint constraints is dif-
ferent than in the rigid body, because now points and vectors cannot be shared at
the joints and the elastic deformations at those points need to be included.

11.2.1 Kinematics of a Flexible Body

Figure 11.1 shows a flexible body which will be denoted as b and which is de-
fined by the two points i and j and by the two vectors u; and u;. Note that points
i and j are not material points but just two points chosen for the definition of the
moving frame. We assume that ri-r;, u;, and u; are not coplanar. If a body has
more than two points and two vectors, the formulation can readily be modified to
accommodate the additional coordinates by simply adding additional rigid body
constraints (See Chapter 2).

Consider the moving reference frame (X», Y», Zb) attached to the body. Let
AP be the orthogonal rotation matrix that relates the inertial frame (X, Y, Z) to
the body moving frame. We can write

X" =A"X" (11.1)

where X represents a (3x3) matrix whose columns are, respectively, ri-T;, u;,
and u;. The upper bar denotes vectors referred to the moving frame. Similarly
(See Chapter 4), X ~ is a (3x3) constant matrix, whose columns are rj-r;, u;, and
u;j. Matrix A’ can be obtained from equation (11.1) by simple inversion:

AP =x" xhy (11.2)
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I

Figure 11.2. Cantilever modes of a beam-like flexible body.

Consider the body b and in it a material point P. Consider also a material
segment through P, with its direction defined by a unit vector up. The deformed
position of P and up can be written as:

rp=r,+ A’ Fp—1)+ A° 5Tp (11.3)

uP=Ab(ﬁP+ oup (11.4)

where 0 T represents the elastic displacement P, and & ur the elastic incremental
rotation of up, both expressed in the moving reference frame.

We can now proceed with the spatial discretization of the elastic displacement
by defining a set of N Ritz vectors, such as finite elements or assumed modes
for body b, namely 5;}(, k=1, ..., Ng. These vectors are functions of the mate-
rial coordinates rp of the point. The set 5;3( contains the assumed displacement
field corresponding to the assumed modes or finite elements with the rotations
defined by the derivatives 5';?1( Using this set of Ritz vectors, the displacements
and rotations at point P can be expressed as:

Ngr

—b — b
5fp=k2 M@ bp =®Bp M’ (11.5)
=1
NR b —ob
Sup=> OO =®p M’ (11.6)

k=1

where rh'f(t) are the time-dependent amplitude factors of the Ritz vectors (assumed
modes or finite elements).

At this point, the analyst has two choices: a) consider a finite element model
from which one can extract a reduced set of assumed modes using, for instance,
component mode synthesis; or b) obtain a set of such modes experimentally
through a vibration analyzer. Note that 6;11 does not depend on time; thus it will
not be differentiated. That the rigid body modes must also be eliminated from the
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Ritz vectors, since the rigid body motion is already taken into account by the
natural coordinates of the moving frame. One of several possible ways of impos-
ing this condition is to select all the Ritz vectors with a clamped end at the ori-
gin of the moving frame. In this case, the moving frame attached to the elastic
modes will be defined by (rj-r;) and u;. Note that r; is not a material point of the
elastic body. Figure 11.2 shows the two first cantilever modes for a beam-like
body.

11.2.2 Derivation of the Kinetic Energy

In order to obtain the expression for the inertia forces we first derive the expres-
sion for the kinetic energy of the body b in the form

Tb:% Fp Fpdn (11.7)

Jvp

Then, substituting equation (11.5) in (11.3) one can obtain
rp=r; + A’ (rp-T)+ A’ 6Pb 'ﬂb) (11.8)
Substituting equations (4.49) and (4.50) into (11.8) one obtains
rp=Cpq’+ A" @ 1" (11.9)

where (See Chapter 4) Cl% is a time invariant matrix that depends on the location
of P, and (" is the vector that contains the Cartesian coordinates of both the
points i and j and the unit vectors u; and u;. The velocity of P is obtained by the
differentiation of equation (11.9):

. b by b__b.b
tp=Cpd +A ®pn’+A ®Bp1 (11.10)
.b .
Matrix A may be expressed in terms of qb in the following manner: first,
differentiate (11.2) to obtain
b b -l
A =X X) (11.11)
then, substitute this result into (11.10) to obtain
: LI _b.b
fp=Crg +X X)) @, n"+A° @, 1 (11.12)
Now the second term on the RHS of (11.12) can be modified by defining a
modal transformation matrix Tllj , such that
-1
¥, =X @ (11.13)

The mentioned term may be expressed as
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.b b b NR
X X) CDP‘I’] X ‘I’p‘l’] =X ztpk T]k (11.14)

where t are the transformed modal vectors. The product of X' ty may be ex-
pressed as:

-\ b
t
X6 = [ -5 \} -

(11.15)

u.

S b b .
=L 0L ol 5Ll wl ~ Tr q
1
] Jf

where T}y is a matrix that plays the same role of C} but now is applied to the
coordinates of the point P. Substituting (11.14) into (11.10) a final expression
for the velocity of P is obtained:

) pb.b My b b_b.b
rp=CPq +Z7‘]kTqu + A q)pn (1116)
k=1

Finally, by substituting (11.18) into the expression of the kinetic energy
(11.7), we arrive at the following final expression:

.b
/q\ (11.17)

where

. ve
M?r=’ CETcEdm+2nEI (Y Tp + Tp Co)dm +
Vol k=1 Vol

(11.18)
NR NR
bT b
+ 771? nlb Tpy Tpydm
k=1 I=1 IVol
b [ _bT bbb Moy T bbb
M1f=] Cpr A <I>pa?n+2nk] T A ®p dn (11.19)
Vol k=1 Vol
Mg:’ 6PbTAbTAb6Pbam =’ 6pr5Pbdm (11.20)
JVol .

The sub indexes (-), and (-), have been used to dlfferentlate the terms corre-
sponding to the rigid body motion characterized by q from those that correspond
to elastic deformations characterized by 1. It may be observed from those expres-
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sions how both ¢’ and 1 are coupled in two different ways: a) through the cou-
pling matrices M, y My,; b) and by means of the 1) dependent terms that are in-
cluded in M% and which appear in equation (11.20). The first term on the RHS
of equation (11.20) coincides with the mass matrix of the rigid element as devel-
oped in Section 4.2. The second term contains a summation term that is linear
in the elastic deformations 1. The last term contains a double summation that
depends on the square of the elastic deformations. If one is consistent with the
assumption of small deformations, these square terms may be neglected for all
practical purposes. However, the second linear term in 1} may not be neglected as
a general rule. Only after a careful comparison of the magnitude of these terms
with those corresponding to the rigid case, may they be neglected. It may be fi-
nally observed that M does not depend either on the deformation or the rigid
body coordinates. It is the constant mass matrix usually considered in structural
dynamics (Craig (1981)).

Equation (11.18) contains integrals that are independent of both position as
well as time. These can be computed only once prior to the numerical integra-
tion of the equations of motion. The integral of the first term of this equation
was seen in detail in Section 4.2. In the following exercise, it will be shown
how to compute in an efficient manner the second term of this equation.

Example 11.1

Assuming that the Ritz vectors have been computed using finite elements, develop
a procedure to integrate

bT T b .
(Cp Tpx+ Ty Cp)dm (1)

Jvp
Solution: Recall that the expressions for le> and thnk are:
To=l -0 L1 4L | oL | 5l ] (ii)
=<)Ll gL, | 51, | &I, | (iii)

where the vectors flt;k y ¢p have been defined in equations (11.16) and (4.55), re-
spectively, as:

-1
th=X" On (iv)
o= X" &7 W)

It becomes obvious that one does not need to integrate the matrix products as
they appear in (i). It is sufficient to compute the following integral

- c
b bT 1 b .
l cp tp dm = ’cz‘ {1,213 Jp dm (vi)
Vb . \ C3 ’P
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Equation (vi) contains all the terms necessary to build equation (i). If finite el-
ements are used to compute (vi), one may proceed in the following manner. First,
substitute in (vi) the results of (iv) and (v):

" et an =[x l (Fo-t) by dm [X"] (vii)
Vb JVp

Now, interpolate the spatial variables (geometry as well as deformed shapes)
appearing in the integrand of (vii) using the finite element deformed shapes

-1) =N (T -T)X (viii)

b b,— — b .
¢p = N(rp— 1) Py (ix)
where Nb(FP — 1) are the finite element functions that are used to interpolate both
the geometry as well as the global deformed shapes of the body. The vector X rep-
resents the coordinates of the finite element mesh, and p; are the values of k mode
in the nodes of the finite element mesh. Substituting the equations (viii) and (ix)
in the integral (vii), one can obtain
- -1 [ T -T
bT —b b b _ —b
[ ety dm = X" | N o N @) an (X x)
Vi Jvp
Only interpolation functions are part of the integrand, since the expression in-
side the parenthesis in the middle of the integral does not depend on the spatial
coordinates. The integral (x) may be calculated in a body-by-body basis.

The final step is to express the kinetic energy of the whole multibody system
as an addition of the energies of each individual body:

.T .
T=2Tb=%q Mq (11.21)
b

wherebM andbi] have been obtained by assembling the submatrices MP, and vec-
tors q and M , respectively.

11.2.3 Derivation of the Elastic Potential Energy

The expression for the elastic potential energy takes a very simple form with the
moving frame approach, since it is only due to the contribution of the elastic
displacement. The overall rigid body motion does not contribute to the potential
energy. Consequently, the potential energy of a body is given by

1, :%anKgnb (11.22)
where K© = K} , if the stiffness has been obtained by using finite elements or
Ki=0"K' @ (11.23)

by using assumed modes defined in the local frame.
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The elastic potential energy of the multibody system is obtained by assem-
bling the potential energies of each of its bodies as:

=1 =1 BT o ) ’ \ 1L 11.24
R AL {oxfj\ntz nm

where K is the resulting global stiffness matrix that only affects the subset of q
that corresponds to the elastic displacements 1.

11.2.4 Potential of External Forces

Only the case of a concentrated external force f that is applied at a point P of the
body b will be considered in this section. Assuming that the force f;, is defined
in global coordinates and making use of the equation (11.9), the virtual work of
this force may be written as:

W =drnfp=5¢" Cp + " @y A" fp =

or (11.25)
Cp
o bT o BT\ £
\dq om { } P
1O gAY
from which one may find the generalized force
bT
b C
o {¢prPAbT1 " (1120
Consequently, the potential may be easily calculated as
q
b
v=| " Qp (11.27)

/90

The same procedure is used to calculate the generalized force and potential of
any other type of loading.

11.2.5 Constraint Equations

The constraint equations for flexible bodies modeled with natural coordinates also
come from two different sources, namely, rigid body constraints and joint con-
straints. The rigid body constraints now correspond to the definition of the mov-
ing frame and are derived and formulated as described in Chapter 2. However, the
joint constraints must be modified, since these joints also include elastic defor-
mations. As a consequence, variables such as points and unit vectors can no
longer be shared at the joints.
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Figure 11.3. Revolute joint between two flexible bodies.

The reason why the variables cannot be shared at the joints is explained with
a simple example. Consider the two contiguous bodies ij and mn shown in fig-
ure 11.3, with each of them defined by two points and two vectors. Consider for
the moment that the flexibility is modeled by taking for each of them the first
cantilever mode. In addition, assume that there is a revolute joint between the
two bodies. Now consider that instead of taking two points j and m, only one
point, say i , that is shared between the two bodies is taken. Further consider
that there is only one vector in the joint, say u;, which is shared. Note that in
the flexible case the natural coordinates do not necessarily coincide with material
points or directions, but they are only a mathematical tool to describe the overall
motion. Since a joint constraint must be imposed between material points and
directions, the sharing of variables does not in this case enforce the revolute joint
constraint. Rather, the condition that the deformed end of the body ij is coinci-
dent with the deformed origin of the body mn must be imposed. Since mn is
clamped at the origin, the previous condition means that the body ij cannot de-
form. This obviously is unacceptable. This reasoning can be extended to more
than one mode, but the conclusion is always that the sharing of variables limits
the deformation modes in an unacceptable way.

After this consideration, one can now formulate the constraint equations for
the revolute joint shown in Figure 11.3. First, the deformed positions of j and m
must coincide. Similarly, the deformed unit vectors u; and u,, must also coin-
cide. Those conditions can be written as:

(rj+ 5rj)—(rm+ 5rm)=0 (11.28)

(0 + 8uy) - (uy + Suy,) =0 (11.29)

Using expressions (11.5) and (11.6), the displacements dr;, ory,, ou;, and Suy,
can be expressed as a linear combination of the Ritz vectors as:
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NR

Sr=A"51,=3 10 A" ¢, =A" ®°n" (11.30)
k=1
NR

Su;=A"8u,=Y MO A om=A" &y 1 (11.31)
k=1

and analogously dr,,, and du,,.

The constraint equations for the whole multibody system that can include the
definition of relative coordinates at the joints are obtained by putting together all
the rigid body and joint constraints in the form

®(q.71)=0 (11.32)

11.2.6 Governing Equations of Motion

Several methods for deriving the equations of motion have been presented in
Chapter 4 for rigid body dynamics. The equations of motion in the flexible case
are derived in an analogous way, and, therefore, the final form is identical.
Having developed expressions for the potential and kinetic energies, the most
reasonable way of obtaining the equations of motion is through the Lagrange's
equations, which leads to the following result:

M{+Kq+®A =Q,-M q+T, (11.33)

The last two terms on the RHS of this equation are velocity-dependent in
both the rigid and the elastic coordinates. If the second derivative of the con-
straints is appended, the final form of the equations is

. q,;],d\:/Qw_qu-Kq\
o, 0 M| —eyq-o |

However, the Lagrange multiplier approach is generally not the best way of
integrating these equations of motion. This is due mainly to two reasons: First,
the number of constraints and therefore Lagrange multipliers is now much larger
than in the rigid body case, since there is not sharing of variables at the joints.
Secondly, the elastic terms in the RHS of (11.22) induce a considerable amount
of numerical stiffness to the integration process, particularly if high frequency
modes of vibrations such as axial modes are present in the formulation.

The first problem can be remedied by the use of the penalty formulation as
done in Bayo and Serna (1989) which eliminates the multipliers from the equa-
tions of motion; thus reducing considerably the size of the system of equations.
Other approaches, described in Chapters 5 and 8 to formulate the equations of
motion in independent coordinates using the projection matrix R, can also be
applied for flexible multibody dynamics.

(11.34)

q
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Figure 11.4. Flexible space robot in reorientation maneuver.

It is easy to verify that using the penalty formulation, the equations of mo-
tion become:

(M + ®,a®,) q+Kq=

. T .. . 2 (11.35)
=Qx —Mq+ Ty - P00 (Pq+21LQ2D + Q D)

The second problem, which is related to the stiffness of the resulting equa-
tions, may be solved by using the A-stable numerical algorithms presented in
Chapter 7. The most appropriate implementation of these algorithms for the case
at hand is that explained in Chapter 8, Section 8.5. In this explanation, the dif-
ference equations of the integrator are substituted into the equations of motion.
The resulting set of nonlinear equations is solved using Newton-Raphson itera-
tion.

11.2.7 Numerical Example

Using the method presented above, a satellite deployment maneuver has been
simulated, where a flexible robot turns and repositions a satellite. Figure 11.4
shows the complete system, and Figure 11.5 shows the set of points and vectors
used to define the mathematical model. The main links of the robot (bodies 3 and
4) are assumed to be flexible and have been modeled using six beam elements,
while the other links of the robot (end-effector, wrist) are assumed rigid. The
main body of the satellite is supposed rigid, while the solar arrays are flexible
and modeled with eleven beam elements of equivalent stiffness and mass. An in-
ertial reference frame is located at the base of the manipulator on the shuttle bay.
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Figure 11.5. Natural coordinates model of a flexible robot.

Figure 11.6. Deviation of the x-coordinate of the robot end-effector.

The input to the system is a known variation of the angles driving the ma-
nipulator that leads to the desired motion of the system. This motion is a 90 de-
grees rotation around the Z axis, and, simultaneously, a 180 degrees rotation
around the Y axis, in order to re-orientate the satellite. Using this input, the dy-
namic response of the system has been calculated. Figure 11.6 shows the devia-
tion of the position of the robot end-effector (x-coordinate) relative to the rigid
body motion that represents the elastic vibration response superimposed on the
large rigid body motion. Once the driving input is finished at time 600 sec., a
residual vibration remains in the system due to the absence of damping.
Calculations have been carried out on a Silicon Graphics Power Iris 4D/240
computer, using only one processor. The required CPU time has been about
2000 sec. for a maneuver that lasts 800 sec. in real time.
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11.3 Global Method Based on Large Rotation Theory

The methods in this section are contributions from Avello (1990).

As mentioned in the overview of the different methods, the classical moving
frame approach is based on the assumption of small displacements and equilib-
rium in the undeformed configuration. Kane, Ryan, and Banerjee (1987) showed
that these assumptions lead to a spurious loss of stiffness, when the rotational
velocities are large. Moreover, the method seen in the previous section cannot
handle larger displacements than those for which the linear finite element method
yields accurate results.

When both the elastic displacements are small and the stiffening effects are
not important, the classical method yields sufficiently accurate results. It is usu-
ally preferred because of the reduced number of equations and the possibility of
using either assumed or experimentally found modes of vibration. When the
stiffening effects become important and/or displacements become finite, the
global or absolute method described in this section can be applied. It is called
global or absolute because the entire motion of the body (finite rotation plus de-
formation) is all referred to a fixed frame. This produces a shifting of non-linear-
ity from the inertia terms in the moving frame approach to the deformation
terms in this new approach. A formulation of this type was first presented by
Simo and Vu-Quoc (1986 and 1988) for multibodies modeled as planar and three-
dimensional beams, respectively.

In this section it will be assumed that the flexible bodies are long and slender
and that they can be correctly modeled as beams. Timoshenko’s beam theory will
be used, under the basic assumption that plane sections initially normal to the
centroidal line remain plane after global deformation has taken place. With these
basic assumption, one will derive expressions for a simple nonlinear finite ele-
ment method that can be used to model flexible bodies in a multibody formal-
ism. The most attractive features of this formulation are its simplicity and the
compatibility with the natural coordinates so far used in this book, since the
nodal variables of the new beam element are also Cartesian points and unit vec-
tors.

11.3.1 Kinematics of the Beam

Figure 11.7 shows an initially straight prismatic beam of length L and constant
cross section A. One can define a fixed reference frame (X; X, X3), with the X
axis coincident with the centroidal line, and axes X, and X; coincident with the
principal axes of inertia. Any cross section of the beam can be described in this
initial state by the coordinates (X;, 0, 0) of the intersection point between the
cross section and the centroidal line, and by two mutually orthogonal vectors M
and N parallel to the X, and X; axes. Vectors M and N can be considered as co-
rotational vectors that move rigidly attached to the cross section to which they
belong.
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Figure 11.7. Deformed and undeformed prismatic 3-D beam.

After the beam has undergone finite displacements, the position of its cross
sections can be defined with the coordinates of the intersection point r and with
the components of the co-rotational vectors m and n, as shown in Figure 11.7.
Upper-case letters will be used for the undeformed positions (material coordi-
nates) and lower-case letters for deformed positions (spatial coordinates). If a
Lagrangian formulation is used, one can write the deformed positions as a func-
tion of the undeformed ones. Since the initially straight prismatic beam is char-
acterized in its undeformed position by just the X; coordinate, vectors r, m, and
n can be written as a function of X;, and the time ¢, as r=r(X,, 1), m=m(X,, 1),
and n=n(X,, 7). The deformed coordinates x=(x;, x,, x3) of a particle whose ma-
terial coordinates are X=(X;, X,, X3) can be written as

x(X, ) =r (X, 1)+ X, m(X,, ) + X3n (X}, 1) (11.36)

where X; is not a function of time.

11.3.2 A Nonlinear Beam Finite Element Formulation

In the finite element method, a proper inter-element continuity for the interpo-
lated function and its derivatives must be assured by the shape functions. Typical
Timoshenko beam elements require continuity only in the displacements and ro-
tations but not in their derivatives (C” continuity). This is achieved by interpo-
lating independently the displacements and rotations inside each element. In this
section, an independent interpolation will be assumed for the nodal variables.
However, the nodal variables that will be used in this section are different, in na-
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Figure 11.8. Cartesian dependent coordinates for a beam section.

ture and number, from the classical nodal variables used in linear beam elements.
The nodal variables in the classical beam elements are composed of three dis-
placements u; and three rotations 6;. Instead, the nodal variables used here are
composed of the three coordinates of the position r' and the six components of
the two orthogonal unit vectors m' and ni, as shown in Figure 11.8.

The nine nodal variables (r!, m!, n') are redundant, because only three of the
six components of m' and n' are independent. In fact, there are three constraint
equations that m' and n' must satisfy, two corresponding to the unit norm condi-
tion and the third corresponding to the orthogonality condition between them.
Redundant variables have been extensively used in the kinematic and dynamic
analysis of multibody systems, as has been seen throughout this book, but sel-
dom in the finite element method. The main advantage of using redundant vari-
ables is that the overall complexity of the formulation is reduced. The degree of
non-linearity of the problem is reduced as the number of variables is increased.
The cost that one has to pay is the introduction of constraint equations to enforce
the satisfaction of the constraints at the nodes.

Let (rl, mi, n!), i = 1, ..., p¢ be the values of (r, m, n) in the p¢ nodes that
belong to the finite element e. The values of (r, m, n) inside each finite element
are obtained through the following interpolation scheme:

I I 7
r'=Y) Nr, m°=) Nm, n'=)Nn (11.37)
il = &l
where N; are the shape functions that can be found in any standard book in the
finite element method (See Bathe (1982)).

Note that in expression (11.37) unit vectors are being interpolated. Since the
shape functions are not required to preserve the norm, vectors m® and n® have no
longer a unit module. In the same way, the interpolated values m® and n® are not
orthogonal. This interpolation inconsistency adds a new source of numerical er-
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ror that is added to the global error of the finite element method. A full discus-
sion on how this error affects the accuracy of the solution goes beyond the scope
of this chapter, but the following points may give more insight.

— First, the magnitude of the interpolation errors depends on the relative rota-
tion among the nodes of a single finite element. This means that small rela-
tive rotations imply small interpolation errors. For example, one can interpo-
late the two vectors:

w0V 2 fcos o)

\1/ isin (pf (11.38)
with the linear shape functions:
N=L=X N =x (11.39)
L L
The resulting interpolated vector inside the element can be obtained as
m'=N,m' + N,m’ (11.40)
The module of this vector can be easily calculated as:
2 2 2
m m =N+ N, 2N, Nym' m’ =2 %~ X |(1-cos @)+ 1 (11.41)
L L

The maximum constraint violation is obtained in the middle of the element.
Take =10 degrees and compute the module of m® by taking the square root
of equation (11.41). The resulting value is |me‘=0.996195, which represents
an error below the 0.4%. Since one does not expect to handle rotations larger
than 10 degrees among the nodes of the same finite element, the approxima-
tion seems quite reasonable.

— Secondly, the convergence of the finite element method is guaranteed, because
as the number of elements increases the error due to the interpolation de-
creases. In the limit, no error is obtained.

— Finally, the results obtained with this formulation are similar to the ones ob-
tained with other nonlinear formulations.

11.3.3 Derivation of the Kinetic Energy

In order to obtain the inertia forces, one must first develop the expression for the
kinetic energy, which can be obtained from the integral:
[ LT .
Te=1| x° x“dm
2], (11.42)
The velocity of a material point X° is obtained by differentiating expression
(11.36) particularized for element e, and by substituting the interpolation scheme
given in (11.37). This leads to
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e

e P i i i

X =Y N, +X,m +X;n) (11.43)
i=1

Substituting equation (11.43) into (11.42) yields
v TG 2 i

ZNiNj(r r+X,m
=1 j=1

<

e 1 T . 2 T |
T =+ m+X;n n +
2

Ve

(11.44)

T T

AT L AT L AT
+2X,r m +2X3r n+X,X;m n)a?n

where the only terms that depend on the variables of the integral are X, and X;.
Since X, and Xj are principal axes of inertia and recalling that X; coincides with
the center of gravity of the cross section, the three last terms in the integral van-
ish, because they represent two static moments of first order and an inertia prod-
uct. After reordering equation (11.44), the standard form of the kinetic energy is
obtained as

e €T e .¢
T'=1q M q (11.45)
2
where (€ is a vector that contains the nodal variables of element e as
T T T
¢ ={rTm' T @) ) @) ) (11.46)

The matrix M® is constant, symmetric, and is composed of sparse submatri-
ces Mj; of size (9x9). In an homogeneous beam, M° takes the form:

M, M, - Mlpe
M= Mo Mo My (11.47)
Mpel Mpe2 - Mpepe

Acil; 0, 0;
Mij=p| 0, Lely 05 (11.48)
0; 0; Iigls

where p is the volumetric density, I3 the (3X3) unit matrix, and c;; the integral
over the length of the element of the product of shape functions (N; N)).

Compare this simple and constant expression for the mass matrix with the
highly nonlinear matrix obtained in Section 11.2.3. Although the mass matrix
is simpler, the elastic potential energy in the next section is more complicated
than with the moving frame method.
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X3

o

Figure 11.9. Undeformed and deformed position vectors of a point.

X2

11.3.4 Derivation of the Elastic Potential Energy

One of the basic assumptions often made in structural theory is that dis-
placements and displacement gradients are small. When this assumption holds,
the Cauchy strain tensor can be used and accurate results are given. However,
the Cauchy strain tensor does not work for large displacements, since it does not
exhibit the proper invariance under rigid body rotations of the displacement field.
Therefore, when large rotations are considered, a different measure of the strain
must be used.

Several different kinds of strain measures have been proposed when displace-
ments, displacement gradients, or both are finite (Malvern (1969)). These strain
measures can be included in two major groups. Eulerian formulations formulate
the problem in the deformed configuration, while Lagrangian formulations for-
mulate it in the undeformed configuration. Eulerian formulations are used in ap-
plications where an undeformed or initial state does not exist or is unknown, as
in fluid mechanics. In elasticity, however, it seems more useful to use a
Lagrangian formulation, since an undeformed configuration is always assumed to
exist and is taken as a reference state.

The Green strain tensor has typically been used in nonlinear elasticity to
characterize the deformation field of bodies undergoing large displacements. As
the displacements and displacement gradients get smaller, the Green tensor tends
to the Cauchy tensor and, in the limit, they are identical.

Consider a continuous body and a fixed reference frame (X;, X,, X3), as can
be seen in Figure 11.9. Capital letters X=(X;, X,, X3) will be used to refer to the
coordinates of a particle in an initially undeformed position, and lower-case let-
ters x=(x;, x,, x3) will be used for the currently deformed position. In a
Lagrangian formulation, x is taken as a function of X and time, and therefore
can be written



11.3 Global Method Based on Large Rotation Theory 395

x =x(X, 1) (11.49)

The deformation gradient F is defined as the matrix that contains the partial
derivatives of x with respect to X. An infinitesimal vector in the deformed posi-
tion dx can be expressed in terms of the deformation gradient and of its unde-
formed position dX as

dx=§dX=FdX (11.50)
X

The Green deformation tensor C is defined as the one that gives the new
squared length (ds)? of vector dx, into which the given vector dX has deformed.
Thus,

ds’ = dX' C dX (11.51)

The Green strain tensor E gives, by definition, the change in squared length
between the deformed and the undeformed state of a vector dX

ds’—ds* =2 dX' EdX (11.52)

where (dS)? is the original length of vector dX. Comparing equations (11.50),
(11.51), and (11.52), the two following relations can easily be found:

C=FF (11.53)

c-L
2

E= (11.54)
where I is the (3x3) identity matrix.

The potential energy for a linearly elastic homogeneous material can be writ-
ten in terms of the strain vector E= {E;; Ey E33 Ejp Ej3 Ep; 1T as

_1 T
V_E VeE D EdV (11.55)

where the integral is extended to the body in the undeformed configuration. D
represents the matrix of elastic constants, which is defined in terms of Lame’s
constants A and G as

A+2G A A 0 0 0

A A+2G A 0 0 0

D= A A A+2G 0 0 0
0 0 0 26 0 0 (11.56)

0 0 0 0 2G 0

0 0 0 0 0 2G

The values of A and G in terms of the Young modulus E and the Poisson ra-
tio v are:

- Ev G=_FE

(1+v)(1-2v) 2(1+4v) (11.57)
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As seen in equation (11.36), the deformed coordinates of any point of the
beam can be written as

x(X, )=r (X, )+ Xo,m (X, 1) + X3n (X, 1) (11.58)
The deformation gradient F can be easily computed as

K %, %s|x3]=[r +X,m, + Xy, [m|n] (11.59)

oX
where the vertical bars in equation indicate the separation between columns. The
notation () ; is used to represent d(-)/0X;. The Green strain tensor can be ob-
tained by substituting equation (11.59) into equations (11.53) and (11.54) as

F

T T T
X,l X,l — 1 X,l m X,l n
E=;— x) m 0 0 (11.60)
X, n 0 0
with
X,1:r,1+X2 m’1+X3 n (1161)

Substituting equation (11.61) into (11.60) and operating, the following ex-
pression is obtained for the components of the strain vector E:

T T 2 T 2 T
E”=1—(X1X1—1)=]—(r]r1+X2m1m1+X3n1n1+
7 s s 7 N s s s s s

v T T (11.62a)

£2X 0 m, 42X, 0, +2X X;mn, — 1)
Ey =E; =0 (11.62b)
E12=;—X,T1m ;—(r m+X2m m+X3n m) (11.62¢)
E;; = ;xl n—;(r n+X2an+X3n n) (11.62d)
Ey =0 (11.62¢)

If it is assumed that the strains are sufficiently small (note, however, that fi-
n1te elastic dlsplacements and rotations are still being considered), the products
(m m ), (n n, ), and (m n ) in E, are second order terms that can be ne-
glected Furthermore the products (m m) and (n n) are zero, as can easily be
seen by differentiating with respect to X; the two unit norm conditions
(mT m- 1 =0)and (nT n— 1 =0), respectively. With these simplifications, the
strain measures can finally be written as:
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Figure 11.10. Axial, bending, torsion, and shear strains in a beam.

T

Ell=%(r,l r’,—1+2X2r?] my]+2X3 rT] n,l) (116321)
E12=%(r,T1m+X3 nﬂm) (11.63¢)
E13=%(1’,T1H+X2 mT, n) (11.63d)

which is in accordance with the strain distribution predicted by the elemental
theory of strength of materials for a prismatic beam under axial, shearing, bend-
injg, and torsion loads, as illustrated in Figure 11.10. For example, the term
(r; r;—1)/21in Ej, represents a constant strain distribution corresponding to

a pure axial load. Analogously, the term (X» rTl m ;) in E | represents a strain
distribution that varies linearly with X,, with a zero value at the centroid and ex-
treme values at the edges, as corresponds to a pure bending load. The two con-
stant shear strains predicted by the Timoshenko beam theory are known to be in-
correct, and a parabolic strain distribution should appear. This has typically been
corrected by multiplying the area of the cross section by a factor (5/6 for rectan-
gular sections) which gives the correct shear strain energy of the beam.

The potential energy of a single element can now be written as

ne=1’ (EE}, +2GEL+2GEL)av (11.64)
JV

Substituting equation (11.63) and operating, one can obtain
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EAT 4 ELL+ELTY +GA T+
v (11.65)
+GAgTs +G1, rﬂ dx,

He=l’
2.

where I represents the axial strain, I'; and I'; are the bending unit rotations per
unit length, I'; and I'5 are the shearing strains, and Iy is the torsion rotation per
unit length. Their expressions are:

T

ryr;—1
Fl=¥ F2=r,Tln,1 F3=r,Tlm,l
2
11.66
F4=r,Tlm F5=rT1n Iy =nT1m ( )

where A and Ag3 are the equivalent shear areas, and I3, I3, and [, have the
following meaning:

L=|Xx;a L=|X;a L=| (X +X3)dA (11.67)
JA JA JA

The finite element interpolation given in equation (11.37) can be introduced
into equations (11.65) and (11.66). After some algebraic manipulations and rear-
rangements, the following expressions for the strains I'; can be obtained:

E=%quque_Bi’ i=1,...,6 (11.68)

with B, = 1/2,3,=0,i =2, ..., 6, and where q° was defined in (11.46). The ma-
trices G' are symmetric, sparse, and depend only on the shape functions and their
derivatives with respect to X;. Their expressions are as follows:

Niy NiiI; 03 O3

G'=| o, 05 0 (11.69)
03 0; 05
03 03 Ny Nji I
2 —
G = 0, 0, 05 (11.69b)
Nig NIz 03 03
\ 03 Ny NIy 03
G =N, N, I 0; 0; (11.69c)
05 0, 0,
. 0'; Ni,l N] I3 03

G = Nj,l Ni 13 03 03 (1169d)
05 05 03
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Figure 11.11. Definition of a revolute joint.

03 03 Ni; NIz
G’'= o, 0, o (11.69%)

03 03 05
6 —
G = o 03 NuNL (11.69f)
03 Ny NI 03

The total potential energy for the beam is obtained by adding the potential en-
ergy of all the elements given by expressions (11.65), (11.68), and (11.69) as

n=3 1 (11.70)

Observe that in this beam element the potential energy is obtained as a poly-
nomial of order 4 in the position variables because I'T¢ depends on the square of
I';, and T; depends on the square of g°. It is unlike the classical moving frame
formulation of Section 11.2, in which the potential energy is a quadratic func-
tion of the position variables. This complicates the implementation of the elas-
tic forces, but the mass matrix obtained in Section 11.3.3 is constant and can be
computed only once. Therefore, the complexity is transferred from the inertia
forces to the elastic forces, but the overall complexity remains similar to the
moving frame method's complexity.

11.3.5 Constraint Equations

Since the position variables are not independent, constraints must be introduced
at the finite element nodes and at the joints. The constraints at the nodes account
for the unit norm and orthogonality conditions that the unit vectors must satisfy.
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The constraints at the joints restrict the relative motion of adjacent bodies to the
rotations or translations allowed by the kinematic joints.
Each node introduces six constraints of the form

T (11.71)

The constraint equations at the joints can be written in terms of the nodal
variables of the nodes next to the joint. The constraint equations for a revolute
joint are presented below as an example. Figure 11.11 shows two beam-like bod-
ies linked at point P by a revolute joint of axis u. Let a and b be the two nodes
next to the joint, each of them belonging to one of the beams. The revolute
joint constraints must enforce both the condition that point P as attached to the
frame in ¢ and as attached to the frame in b coincides, and the condition that the
vector u as attached to a and as attached to b also coincide. Both conditions can
be written through the following two vector equations equivalent to six scalar
equations:

o /ra+AaarP—rb—AbbrP 0
= a = 11.72
| A'w-A"bw (11.72)

where only two of the last three equations are independent. The matrices A? and
Ab are (3x3) orthogonal rotation matrices given by

A'=[m*An'|m*n*] and A"=[m’An°/ m®°/n"] (11.73)
where the vertical bars denote the separation between columns. The values of
apP bpP ay and Pu are the coordinates of point P and the components of vector
u expressed in frames a and b, respectively.

In the previous example, the joint is linking two beams, but the joint could
also be thought as linking a beam and a rigid body or a beam and a flexible body
with assumed deformation modes. The joint constraints would be developed in
the same way, but different position variables would be used for one of the bod-
ies.

11.3.6 Governing Equations of Motion

Once more the equations of motion can be derived using any of the methods seen
in Chapter 4. Here, the Lagrange multipliers method will be used again. The
Lagrangian function L can be written as
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Figure 11.12. Cantilever beam 45-degree bend.

L=T-I+® A (11.74)

where @ contains the constraints that arise from the unit norm and orthogonality
condition that the nodal variables have to satisfy at the nodes and from the kine-
matic constraints imposed at the joints. Vector A contains the Lagrange multi-
pliers corresponding to the constraints.

The application of the Lagrange’s equations leads to
M§+®,A=Q-F (11.75)

where M is the mass matrix obtained by assembling the mass matrices M¢ of
each element, <Dq the Jacobian matrix of the constraint equations, Q the vector
of generalized external forces, and F the elastic forces. The elastic forces are ob-
tained by differentiating equation (11.65) with respect to ¢, giving

L
Fe= l EANG +ELLG +ELTLG +GAL, T, G +
0 (11.76)
+GAsTsG +GI, T4 G| dX, q°
The matrices G' are very sparse, and consequently the multiplications by ¢
can be carried out analytically with very few arithmetic operations.

11.3.7 Numerical Examples

In this section, the results obtained in three examples are presented in order to
test both the accuracy of the present beam finite element and the numerical inte-
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Table 11.1. Tip displacement (cm) in the cantilever 45-degree bend.
f=300Kg f=450Kg f=600Kg
X] X2 X3 X] X2 X3 X] X2 X3

Present method |22.14 58.66 40.65|18.23 51.84 49.31|15.26 46.48 54.54
Cardona (1989) |22.14 58.64 40.35(18.38 52.11 48.59|15.55 47.04 53.50
Simo (1986) 22.33 58.84 40.08 |18.62 52.32 48.39|15.79 47.23 53.37
Bathe and B. (1979) [22.50 59.20 39.50 | - - - 1590 47.20 53.40
Crisfield (1990) |22.16 58.53 40.5318.43 51.93 48.79|15.61 46.48 53.71

gration procedure. In all cases, the penalty matrix o was taken as oI, and the
value of the penalty factor o was taken as 10° times the largest term appearing
in the tangent stiffness matrix Hqp obtained through differentiation of equation
(11.76). No attempt was made to optimize the value of the penalty factor. It was
found that the iteration process converged in few iterations and that the constraint
violation was kept small, roughly |¢| < o=!. The calculations were performed in
a Silicon Graphics 4D/240 using only one processor. To avoid the shear-lock-
ing, reduced integration has been used for the shear terms.

Example 11.2

The 45-degree bend cantilever beam shown in Figure 11.12 of radius equal to 100
cm shall be considered. It is located in a horizontal plane and a vertical static load f
will be considered acting at the tip. The beam has a unit square cross section and E
= G = 107 Kg/cm?. Tt is discretized using eight linear straight elements.

In Table 11.1, the three coordinates of the tip in the deformed position are pre-
sented for three different values of the force. The values obtained with the finite el-
ement developed in this chapter are compared to the values obtained previously by
Cardona (1989), Simo (1986), Bathe and Bolourchi (1979), and Crisfield (1990).
The total load is applied in six equally-spaced load increments.

It is worth noting that the tip displacements are of the same order of magnitude
as the length of the beam, which is 78.54 cm. Therefore, the behavior of the beam
is totally nonlinear, with finite displacements which could not be studied using a
mode superposition method. As the value of the load increases the solution pro-
vided by the proposed method gives larger displacements than the other formula-
tions. This is because the interpolation in each finite element, as discussed in
Section 11.3.2, does not satisfy the orthogonality condition for variables (m, n).
This static example is an extreme one, and it has been presented to prove that this
assumption is valid. In fact, the maximum discrepancy between the results pre-
sented in Table 11.1 for the different methods is about two per cent.



11.3 Global Method Based on Large Rotation Theory 403

X, F

‘ 50(--

X,

Figure 11.13. Right-angle cantilever beam.

Example 11.3

This example, a right-angle cantilever beam, was first proposed by Simo and Vu-
Quoc (1988) and solved with quadratic elements. Later, it was solved by Cardona
(1989) using linear elements with a very similar formulation as the previous one.
The problem consists of a right-angle cantilever beam composed of two straight
parts of length L=10, each, as shown in Figure 11.13.

The physical characteristics of the beam are not realistic, but they are useful to
test the accuracy of the method in a dynamic simulation when large relative dis-
placements appear. Their values, using the notation in Simo and Vu-Quoc (1988),
are given below:

GA=FEA=10°
El, = El; = GI, = 10°
A,=1

Loy =215 =21,3=20

There is a dynamic vertical load F acting at the elbow with a triangular varia-
tion law. The load acts for 2 sec and reaches a peak of F,,,,=50 at =1 sec, as can be
seen in Figure 11.13. The problem has been solved with two different discretiza-
tions using four and eight linear elements. The total simulation time is 30 sec. In
Figures 11.14 and 11.15, the vertical displacements of the elbow and the tip ob-
tained with four and eight elements are plotted. The agreement of this dynamic re-
sponse compared to Simo and Vu-Quoc (1988) and Cardona (1989) is poor for the
four elements discretization, but it is good when eight elements are used.

The results were obtained using a constant step size of 0.125 sec. The average
number of iterations in the Newton-Raphson procedure was three. The CPU times
were 20.6 sec for the four elements discretization and 44.4 sec for the eight ele-
ments discretization .
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Figure 11.14. Elbow vertical displacement using four and eight finite elements.
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Figure 11.15. Tip vertical displacement using four and eight finite elements.
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Figure 11.16. Spatial manipulator with two flexible links.
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Example 11.4

A flexible spatial manipulator composed of two rigid and two flexible links is pre-
sented in Figure 11.16. Links 2 and 3 are flexible beams of tubular section. Each
link is connected to the previous one through a revolute joint. At the midpoint of
link 4 a lumped mass of 200 Kg has been attached to represent a load. The geomet-
ric and material properties of the links are:

L;=03m Inner radius of the cross section for links 2 and 3.

L) =40m ri =0.04 m

L3=50m

Ly=05m Outer radius of the cross section for links 2 and 3.
E = 6895 107 N/m2 ro=0.05m

p = 2699 Kg/m3

Links 1 and 4 have been modeled, respectively, with a single finite element of
high-elasticity modulus, and links 2 and 3 have been modeled with four elements
each. The simulation that has been carried out is based on a prescribed motion in
each revolute joint that moves the manipulator from the initial configuration to
the final one, both shown in Figure 11.16. The prescribed motion is such that
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Figure 11.17. Tip deviations in the X, Y, and Z directions with respect to the rigid
body trajectory.

there is a rotation of 90 degrees in joints 1 and 4 and a rotation of 45 degrees in
joints 2 and 3. The variation law of each joint is the following:

”(t—Tssin(zm)) 0<t< T,
2T; 2r T,

us t>T,
2

9]=04=

”(t—TSsin(zm)) 0<t< T,
ar,\\ 2z \ 7T,

92 = 93 = '
\ A t=2T,
4

The total simulation time is 25 sec, and Tg was taken to be 15 sec. Figure 11.17
illustrates the three (X,Y,Z) components of the tip deviation with respect to the
nominal motion (that is, the trajectory obtained with all the links considered as
rigid) as a function of time. The CPU time is 43.2 sec with a fixed step size of 0.2
sec and an average of 3.3 Newton-Raphson iterations per step.
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